
Ten Years of RSA Cheating
Cryptosystems

Jihoon Cho
jhcho@math.uwaterloo.ca

Dept. of Combinatorics and Optimization

University of Waterloo

Abstract

RSA cheating cryptosystems were first introduced by Anderson

and developed by Young and Yung with their SETUP mechanism.

Recently, Crépeau and Slakmon suggested very simple backdoors for

this purpose. This paper sums up these methods. We also describe

the LLL-reduction algorithm, which is useful to prove that Anderson’s

trapdoor is insecure and to factor integers where the high bits of their

prime factors are known.

1 Introduction

Cryptographic devices might be considered black boxes in the sense that the
users trust internal designs and they usually have no access to check the au-
thenticity and integrity of the software. At the same time, the manufacturers
are reluctant to publish the source code in order to protect their intellectual
property. Under this black-box cryptosystem environment, can we trust the
algorithms inside cryptographic devices?

Actually, it is possible to construct cryptographic systems that leak in-
formation so that the manufacturer may attack the users by recovering their
secret information from the output of cryptographic systems. Such a cryp-
tographic system is called a Secretly Embedded Trapdoor with Universal Pro-

tection (SETUP) mechanism. One requirement is that the manufacturer
should make this cheating software in such a way that the presence of this

1

setup mechanism is unnoticeable by the users as well as others and it should
be hard to reverse-engineer by a third party. That is, the setup mechanism
should be designed to give an advantage only to the manufacturer. There
have been suggested several setups in RSA, ElGamal, DSA, and Kerberos.
In this paper, we focus our attention on setups for RSA.

Anderson [1] proposed a cheating RSA-key generation algorithm by em-
bedding a trapdoor in the setup, but it was proven to be insecure using the
lattice basis reduction algorithm by Kaliski [5]. According to PAPs, setup
mechanisms of Young and Yung [9] [10], the manufacturer designs the setup
to leak secret information in the representation of the public RSA modulus
n and these schemes work for any public exponent e. The attackers use ei-
ther their own RSA private/public key pairs or ones of ElGamal encryption
scheme. However, this PAP not only contains a critical deficiency but also
does their running time not compare well with the standard RSA-key genera-
tion algorithm. Later, an analogous system to PAPs that is more simple and
secure was put forward by Crépeau and Slakmon [3]. They also presented
extremely simple RSA setups which have nearly the same running time as
the original. In contrast with PAPs, these three schemes generate genuinely
a random p and q and embed a simple backdoor in the representation of a
public exponent e.

2 Anderson’s SETUP Algorithm

2.1 Anderson’s RSA trapdoor

Anderson [1] suggested a cheating RSA public-key generator whereby the de-
signer can easily factor the public modulus, while it is supposed to be difficult
for other parties to find this trapdoor and factor the modulus. Assuming we
use 256 bits primes, he proposed the following algorithm.

Algorithm 1. Anderson’s trapdoor in RSA-key generator

1. choose a 200-bit prime number A to be a secret.
2. choose a random number between 0 and 2100 and find the next prime q.
3. repeat step 2 until p = r(A, q)A + q is prime.
4. generate another prime number p′ with the same process as steps 2 and 3.
5. set n← pp′.
6. we do exactly the same procedure as RSA-key generator after this.

2

In this algorithm, the r(A, q) is 56 bits long and q is a prime number
satisfying q <

√
A. Since A and q are relative prime, we can find such a

prime p due to the following.

Theorem 1. Dirichlet’s theorem
For any two positive coprime integers A and B, there are infinitely many
primes of the form A + nB, where n > 0.

In other words, we can say there are infinitely many primes which are
congruent to A modulo B. If we suppose users implement this cheating RSA-
key generator, the designer of the hardware can recover the user’s secret key
by factoring the public RSA modulus n as follows.

n = pp′

= (rA + q)(r′A + q′)

= rr′A2 + (rq′ + r′q)A + qq′.

The designer reduces the modulus n modulo A to recover qq′, which is 200
bits long, so qq′ can be easily factored. Having found q and q′, the designer
can recover r and r′, and hence p and p′.

2.2 Breaking Anderson’s Trapdoor

In fact, the secret information can be detected using LLL-reduction al-
gorithm1 [5]. From now on, we describe how to find the trapdoor. Let
p0, p1, . . . , pk be the trapped primes and r0, r1, . . . , rk be the corresponding
parameters (i.e. pi = riA + qi for i = 0, 1, . . . , k). Then, we have

∣

∣

∣

∣

∣

r0
pi

p0
− ri

∣

∣

∣

∣

∣

<
2√
A

, (1)

for i = 1, 2, . . . , k. These inequalities are called simultaneous Diophantine

Equation [7], and they are classified as unusually good if 2/
√

A < p
−1/k
0 ,

which is the case when k ≥ 3. The simultaneous Diophantine approximation
problem of finding r0, r1, . . . , rk is easily set up as a problem of finding a
short vector in a lattice L. Actually, there is no known polynomial time

1The appendix includes an introduction to lattices and details of the LLL-reduction

algorithm

3

algorithm for finding the shortest vector in a lattice, although this problem
is not proven to be NP-hard. However, there are polynomial time algorithms
to find relatively short vectors in a lattice.

Suppose we are looking for a denominator r0 which produces an approx-
imation vector

ξ =

(

r1

r0

,
r2

r0

, . . . ,
rk

r0

)

to α =

(

p1

p0

,
p2

p0

, . . . ,
pk

p0

)

and satisfying the condition (1). Then we consider a lattice L ⊂ Zk+1 with
a basis

b1 = (λp0, 0, 0, . . . , 0)

b2 = (0, λp0, 0, . . . , 0)

b3 = (0, 0, λp0, . . . , 0)

.

bk = (0, 0, 0, . . . , λp0, 0)

bk+1 = (−λp1,−λp2, . . . ,−λpk, 1),

where λ is a scaling factor. If α has an approximation vector ξ, then the
vector

v = r1b1 + r2b2 + · · ·+ rkbk + r0bk+1

= (λ(r1p0 − r0p1), . . . , λ(rkp0 − r0pk), r0)

has length

‖v‖ =

√

k(λ2p2
0)(p

−1/k
0)2 + r2

0,

where we choose λ in such a way not to make the r2
0 term too big. Since

this vector v is quite short compared to the original basis vectors, we hope
that the vector v will show up in the reduced basis for the lattice L obtained
by the LLL-reduction algorithm. We note that the desired denominator r0

of ξ is directly recoverable as the last coordinate of v. After finding r0, we
can easily determine r1, r2, . . . , rk. Then, we choose small prime numbers
t1, t2, . . . , tl such that

∏l
j=1 tj > A. Assuming gcd(ri, tj) = 1, we know the

fact that
A mod tj 6= r−1

i pi,

since qi = pi − riA is a prime number and tj - qi. Then, we can determine
A by the Chinese Remainder Theorem. Anderson’s trapdoor is now broken.

4

Hence, the user, who finds the trapdoor A, either stops using the hardware
or is able to attack the other users of the same hardware by factoring their
public modulus and finding their secret keys.

3 SETUP Mechanism of Young and Yung

The Pretty-Awful-Privacy (PAP) comes from the Pretty-Good-Privacy (PGP),
which is widely-used software for secure email communications. We describe
the two PAPs as SETUP mechanisms designed by Young and Yung. As
for one of PAPs, attackers possesses RSA public and private keys for their
purpose. For the other one, the public and private keys of ElGamal encryp-
tion scheme are employed for the attack. After seeing two types of PAPs,
we introduce an analogous but more simple and secure scheme presented by
Crépeau and Slackmon.

3.1 PAP as a Setup

Before seeing PAP, we first observe a simple SETUP mechanism which looks
like the first PAP in the sense that the attacker has his or her own keys,
say (E, N) and D, and it hides enough information within generated keys
(e, n) to allow the attacker to find d from (e, n). We assume that the public
exponent e is generated randomly from {0, 1}k and the attacker’s modulus
N is k bits long.

Algorithm 2. Key generator

1. choose randomly k-bit primes p and q.
2. compute e← pE mod N .
3. if gcd(e, φ(n)) = 1

then compute d← e−1 mod φ(n).
else choose new p and q.

The attacker can factor the modulus n by simply computing eD mod N
and getting p. However, this is not effective for RSA cryptosystems such
as PGP which uses a small exponent e. Hence, this attack is likely to be
noticed. The problem of the above SETUP can be solved by hiding our
secret information in the representation of n rather than e. In this case, we
don’t have to choose a big exponent e. Now we introduce a stronger version

5

of RSA SETUP, namely PAP. We assume (E, N) and D are the attacker’s
keys and N and n are k bits and 2k bits long, respectively. Let the public
exponent e be fixed.

Algorithm 3. PAP as a setup

1. choose a random k-bit prime p.
2. randomize p using keyed randomizing function F .

i.e. p′ ← F (p) with key K + i, where i = 0 as an initial value.
3. while i < B1 do

if p′ < N , then go to step 4.
else go to step 2 increasing i by 1.

go to step 1.
4. set p′′ := (p′)E mod N .
5. randomize p′′ using keyed randomizing function G.

i.e. p′′′ ← G(p′) with key K + j, where j = 0 as an initial value.
6. while j < B2 do

set X ← (p′′′ : random k-bit string).
compute a quotient q when dividing X by p.
if q is prime, then go to step 7.

else go to step 5 increasing j by 1.
go to step 1.

7. set n← pq.
8. if gcd(e, φ(n)) = 1, then go to step 10.

else go to step 9.
9. while gcd(e, φ(n)) > 1, increase e by 2.
10. return (p, q, e).

In step 6, we note that p′′′ is k bits, so we choose randomly k-bit string
from {0, 1}k, obtaining 2k-bit X. Besides getting the pseudo-randomness of
p′, the function F is employed to get rid of the possibility that p′ is not less
than the attacker’s modulus N . Also, we use the randomizing function G to
avoid the excessive encryptions in the step 5. We need to choose suitable B1

and B2 in such a way that these numbers guarantee relatively high probability
for finding valid p and q. We can achieve this using the Prime Number
Theorem [2].

6

Given public keys generated by the above algorithm, the author of this
scheme can attack the users as follows.

Algorithm 4. Attack

1. set U be the first k bits of n.
2. compute p′′ ← G−1(U) using keys K + j (0 ≤ j ≤ B2 − 1).
3. compute p′ ← (p′′)D mod N.
4. compute p← F−1(p′) using keys K + i (0 ≤ i ≤ B1 − 1).
5. if there exists p such that p|n

then we are done.
else set U ← U + 1 and go to step 2.

When we divide X by p, the bit size of the remainder r is not bigger than
k since p is k bits long. Hence, we obtain

p′′′ = U or p′′′ = U + 1,

since there is a chance the sum of the second k-bit string of n and the
remainder r is k + 1 bits long. In step 2 and 4, we obtain all possible values
for p′′ and p, then we attack successfully if we find p such that p|n.

3.2 PAP Using Discrete Log Attack

Given a random value in some range, we are required to have new random
value as input with a larger range in our new scheme. For instance, given
x which is uniformly distributed in [1, R], we want x′ to be uniformly dis-
tributed in [1, S], where 2R > S. This can be done using the Probabilistic

Biased Removal Method (PBRM), which can be described as follows.

We flip an unbiased coin, and we get a head (H) or a tail (T).
1. if x ≤ S −R and H, set x′ ← x.
2. if x ≤ S −R and T, set x′ ← S − x.
3. if x > S − R and H, set x′ ← x.
4. if x > S − R and T, we flip again.

Then, it is easy to show x′ is uniformly distributed in [1, S]. Since x is
uniformly distributed in [1, R], a value x can be chosen with a probability
1/R. When x ≤ S − R, x′ takes x with a probability 1/2R and takes S − x
with a probability 1/2R. When x > S − R, x′ will set to be x with a

7

probability 1/2R. Therefore, the probability to take a particular value x′ in
[1, S] is 1/2R, which implies x′ is uniformly distributed in [1, S].

Our new strong setup is based on the discrete log attack, so this version
of PAP contains the attacker’s ElGamal public key (Y, g, P) and private key
X, where P has the same bit size as the factor p of n. We assume P is M
bits long and K is a fixed symmetric key. Let the public key e be fixed.

Algorithm 5. Strong Setup PAP

1. choose a random c1 ∈ ZP−1.
2. compute z ← gc1−WtY −c1.
3. apply PBRM to z. i.e. z′ ←PBRM(z).
4. compute z′′ ← H(z′).
5. set the least significant bit of z′′ to be 1.
6. set i← 0 and while i ≤ B1 do

set p← z′′ + i
if p is prime, then go to step 7.

else increase i by 2.
go to step 1.

7. set u← PBRM(gc1 mod P).
8. set j ← 0 and while j < B2 do

set U ← G(u, K + j).
choose the number N uniformly at random from {0, 1}M .
set n′ ← (U : N).
compute q such that n′ = pq + r.
if q is prime, then set n← n′ − r and go to step 10.
increase j by 1.

go to step 1.
10. compute private key d given n and e.

In step 2, we perform an ElGamal encryption with a message z obtaining
ciphertext (r, s), where r = gc1 mod P and s = Y c1z mod P given a random
value c1 ∈ ZP−1. Then we set r = s to compute z. Moreover, we apply gWt

for z with t that is chosen uniformly at random from {0, 1}. The reason we
use W is to avoid the detection of setup in the case the hash function H
is invertible. We suppose the PBRM in step 3 is not applied (i.e. z = z′)
and users have an excess to c1 and z′′. We also assume W is not used (i.e.
t = 0). Under this circumstances, the setup might be detected by the users
on the probabilistic basis as follows; The user can compute z, since the hash

8

function H is invertible. First, the user supposes the private key X is odd.
On this assumption,

if c1 is odd, then gc1/z would be a quadratic residue mod P
if c1 is even, then gc1/z would be a quadratic non-residue mod P ,

since Y c1z = gc1. Now the user supposes X is even. Then, gc1/z is always
a quadratic residue mod P regardless of c1. Hence, the user might find out
the probabilistic pattern, which means the attack is not secure.

We might also consider the case that p is bigger than P . Thus, we apply
PBRM in step 3 on the assumption that the domain of H is larger than P .
The step 5 is done to make z′′ odd and we try to find the prime number
from z′′ in the next step, where we set the limit of i to be some constant B1

and we go back to the first stage if i exceeds B1 to ensure the appreciable
probability for finding a valid prime. In step 8, the randomizing keyed-
function, G, applies a key K +j to the data a obtaining a value b = G(a, K +
j). This function takes advantage of the pseudo-randomness and reducing the
complexity just like the randomizing function in the previous PAP scheme.
The remaining portions of this scheme are similar to the previous PAP.

Given public keys generated by the above algorithm, the author of this
scheme can attack the users as follows. Note that | | denotes a bit size.

Algorithm 6. Attack

1. set U be the upper |n| −M bits of n.
2. compute u← G−1(U) using keys K + j (0 ≤ j ≤ B2 − 1).
3. if u ≥ P , then set (gc1 mod P)← S − u.

else set (gc1 mod P)← u.
4. compute z ← gc1−Wt(gX)−c1 with the private key X.
5. do the same steps as algorithm 5 (from step 3 to step 6).
6. if there exists p such that p|n

then we are done.
else set U ← U + 1 and go to step 2.

The PAP has an advantage that it allows any size of public exponent
e. However, it has a critical flaw that the most significant bits of n are
uniformly distributed which does not happen normally. We suppose we are
using 1024-bit modulus n and we choose two 512-bit primes p, q. The two
most significant bits of n = pq have value 01 or 00 with a probability 0.38, 10
with 0.48 and 11 with 0.14. Of course, this implies that the most significant

9

bits of n are not uniformly distributed as it is the case with the standard
RSA key generator.

3.3 Hidden Prime Factor

Crépeau and Slakmon [3] suggested the advanced type of the PAP version,
which is very similar to PAP but the distribution of n, p, q is indistinguishable
from the honest one. In this scheme, we hide the first half bits of p in
the expression of n. Subsequently, Coppersmith’s partial information attack

allows to recover p and q from n. Given k-bit integer n, we denote nek′

as
first k′ bits and nck′

as last k′ bits of n, for 1 ≤ k′ ≤ k. We define a πα to be
a permutation from odd integers less than n to themselves with an imbedded
backdoor α.

Algorithm 7. Hidden Prime Factor

1. pick a random prime p of the appropriate size such that gcd(e, p− 1) = 1.
2. pick a random odd number q′ and compute n′ = pq′.

3. compute n← (n′ek
8 : πα(pek

4) : n′c 5

8
k)

and compute odd q by setting q ← bn
p
c+ (1± 1)/2.

4. while gcd(e, q − 1) > 1 or q is composite do
pick a random even number m such that |m| = k/8.
set q ← q ⊕m and n← pq.

5. compute d← e−1 mod φ(n).
6. return (p, q, e, d).

Given the backdoor α and public knowledge (n, e), an attack can be per-
formed as follows. From the public modulus n, the author of this scheme
first computes pek

4 = π−1
α (ne 3

8
kck

4

), where n is a k-bit integer. Then Copper-

smith’s partial information attack [4] makes it possible to factor n as p and

q. Here we give a sketch of this procedure. If we set P = pek
4 2

3

4
k, we also get

Q = qek
4 2

3

4
k by division of n by p. Then p and q can be written as

p = P + p0 and q = Q + q0,

where P , Q are known but p0, q0 are unknown. Also, we have the following
equation,

n = pq = (P + p0)(Q + q0)

= PQ + Pq0 + Qp0 + p0q0.

10

If we set p0 = x and q0 = y, we have

f(x, y) = (P + x)(Q + y)− n

= PQ + Py + Qx + xy − n.

Then factoring n is equivalent to finding the solution (p0, q0) to the polyno-
mial equation f(x, y) = 0. In general, we define

D = max
ij
{|fij|X iY j}

for a polynomial f(x, y) =
∑

ij fij xiyj with |x| < X and |y| < Y . Let α be

a degree in each variable. As long as (XY) < D2/3α, we can find the solution
to f(x, y) = 0 by reducing the problem to a lattice problem and then using
the LLL-reduction algorithm. For details, see [4]. Given our polynomial
f(x, y) = PQ + Py + Qx + xy − n, we have

D = max{XY, QX, PY, |PQ− n|}

and the absolute values of x and y are bounded. i.e. |x| < X = P/n
1

4 and

|y| < Y = Q/n
1

4 . Then (XY)
3

2 < D holds, since

(XY)

PY

3

2

=

(

PQ

n

)
1

2

< 1.

As the candidates for the permutation πα, we might consider πα : N −→
N which is defined by

x 7−→ x⊕ (2α)c|x| or x 7−→ x−1 mod α

where |x| denotes a bit size of x and N is the set of odd integers smaller
than n. It is easy to show that these are bijective and map odd integers
to themselves. These permutations are simple to use, but in fact these are
not secure for Algorithm 5. First, the permutation πα(x) = x ⊕ (2α)c|x| is
insecure, since given two pairs of prime factors (p, q) and (p′, q′), we have

(n⊕ n′)e 3

8
kck

4

= πα(pek
4)⊕ πα(p′ek

4)

= (pek
4 ⊕ (2α)c

|pe
k
4 |

)⊕ (p′ek
4 ⊕ (2α)c

|p′e
k
4 |

)

= (p′ ⊕ p)ek
4 ,

11

which does not happen normally in the standard system.
If we use the permutation πα(x) = x−1 mod α, then we have

ne 3

8
kck

4

pek
4 = 1 mod α,

which implies ne 3

8
kck

4

pek
4 − 1 is a multiple of α. Hence, one may recover the

backdoor α after several runs. However, the following permutation can be
used for our algorithm without any deficiency;

πα,β(x) = (x⊕ (2β)c|x|)−1 mod α.

4 Relative Simple RSA SETUP

Previous SETUP mechanisms created public modulus n in such a way that
the manufacturer can factor n. From now on, we present extremely sim-
ple schemes which generate genuinely random primes p and q but embed
simple backdoors in private and public exponent pair (d, e), so that the man-
ufacturer can factor n from public information (n, e). These methods are
indistinguishable in a running time analysis, since these are slightly changed
from a standard RSA key generator.

4.1 Hidden Small Private Exponent δ

This scheme employs Wiener’s attack for RSA small private exponent. First,
this method generates the private and public keys (δ, ε), where δ is small
enough to use Wiener’s attack. Then, this weak pair is transformed into
random-looking private and public keys (d, e), where there exists secret rela-
tion between these two pairs and this information can be used for an attack.
The main idea of this algorithm is to imbed a backdoor α to hide the value
of δ in the expression of the public key e. We note that n is a k-bit integer.
We now describe this algorithm in detail. Note that | | denotes a bit size.

Algorithm 8. RSA-HSPEα

1. choose random primes p, q such that n = pq is k bits long.
2. repeat the following.

pick an odd random number δ such that gcd(δ, φ(n)) = 1 and |δ| ≤ k/4.
compute ε← δ−1 mod φ(n) and e← πα(ε).

12

until gcd(e, φ(n)) = 1.
3. compute d← e−1 mod φ(n).
4. return (p, q, e, d).

Given the secret backdoor α and public information (n, e), the attack
can be launched as follows. The author of the scheme first recovers ε by
computing ε = π−1

α (e) with a backdoor α. Then, he applies Wiener’s attack
to find δ from (n, ε). Once the pair (δ, ε) is recovered, he can factor n using
RSA-FACTOR algorithm [8].

We can actually reduce the complexity of finding δ by updating δ with
δ/gcd(δ, φ(n)) if gcd(δ, φ(n)) > 1. The running time of this cheating algo-
rithm is nearly the same as the original RSA key generation algorithm, since
steps 1, 3 and 4 are exactly the same and the number of gcd calculation inside
the main loop is roughly three times the original. Moreover, the computation
of the permutation πα is negligible for performing gcds.

However, if we restrict the size of e to a small value, then this attack fails
because e is also k bits long.

4.2 Hidden Small Public Exponent ε

The next two schemes are based on the recent results of Boneh, Durfee and
Frankel [11]. We state the theorems without proof.

Theorem 2. Let n be the RSA public modulus such that n = pq and p < 4q.

(a) Let t be an integer in the interval [|n|/4, |n|/2] and e be a prime in the
interval [2t, 2t+1]. Given (n, e) and the t most significant bits of d, we
can compute the whole of d.

(b) Let t be an integer in the interval [1, |n|/2] and e be an integer in the
interval [2t, 2t+1]. Given (n, e), the t most significant bits of d, and the
|n|/4 least significant bits of d, we can compute the whole d.

In order to apply the above theorems, we first generate a random private
and public key (δ, ε) with small ε, and transform these into a random looking
pair (d, e), which can be inverted to (δ, ε) with a backdoor by the author of
these schemes. From public information (n, e), the author can compute ε and
the partial knowledge of δ. Then the above theorems allow to recover all of
d. We first observe the case of hidden small prime public exponent ε. The
main idea of this algorithm is to embed a backdoor α to hide the value of

13

ε and partial knowledge of δ in the expression of the public key e. We note
that n is a k-bit integer.

Algorithm 9. RSA-HSPPEα

1. choose random primes p, q such that n = pq is k bits long.
2. repeat the following.

pick a random prime number ε such that gcd(ε, φ(n)) = 1 and |ε| = k/4.

compute δ ← ε−1 mod φ(n) and e← πα(δek
4 : ε).

until gcd(e, φ(n)) = 1.
3. compute d← e−1 mod φ(n).
4. return (p, q, e, d).

Given the secret backdoor α and public information (n, e), the attack can
be performed as follows. The author of the scheme first computes π−1

α (e)
with a backdoor α, obtaining the first k/4 significant bits of δ and ε. Then
Theorem 2(a) allows to recover the whole δ. Once the pair (δ, ε) is recovered,
he can factor n using the RSA-FACTOR algorithm.

As the advantage of this scheme, we might consider its simplicity and
the small size of keys. Since the concatenations (δek

4
: ε) is k/2 bits long, we

may generate public exponent e in the range of [
√

n, φ(n)] with extra random
padding if necessary.

We can also reduce the complexity of finding δ by updating δ with
δ/gcd(δ, φ(n)) if gcd(δ, φ(n)) > 1. However, this algorithm is not competitive
in terms of running time, since it takes time to create a prime ε even though
ε is only k/4 bits long.

Now we describe another similar version of hidden small public exponent
ε, where ε does not need to be prime.

Algorithm 10. RSA-HSPEα

1. choose random primes p, q such that n = pq is k bits long.
2. repeat the following.

pick a random prime number ε such that gcd(ε, φ(n)) = 1 and |ε| = t.

compute δ ← ε−1 mod φ(n) and e← πα(δek
4 : δck

4

: ε).

until gcd(e, φ(n)) = 1.
3. compute d← e−1 mod φ(n).
4. return (p, q, e, d).

14

Given the secret backdoor α and public information (n, e), the attack can
be performed as follows. The author of the scheme first computes π−1

α (e) with
a backdoor α, obtaining the first k/4 significant bits of δ, the least significant
bits of δ and ε. Then Theorem 2(b) allows to recover the whole δ. Once the
pair (δ, ε) is recovered, he can factor n using the RSA-FACTOR algorithm.
With regards to the running time, this scheme compares very well with the
original RSA key generation algorithm

5 Conclusion

We introduced several types of setup mechanisms for RSA cryptographic de-
vice. Some of them are not secure, which either allows the third party to
reverse-engineer the setup mechanism or implies that the users may detect
the existence of the setup. On the other hand, the others have survived crypt-
analysis. These results mean there maybe exist unknown RSA setups and
the current RSA-cryptosystem users are being attacked by the manufacturer
of the devices.

References

[1] R. J. Anderson, “A practical RSA trapdoor”, Electronics Letters, 1993,
vol.29, no.11, p.995

[2] G. E. Andrews, “Number Theory”, 1971, Dover Publication Inc., p.100

[3] C. Crépeau, A. Slakmon, “Simple backdoors for RSA key generation”,
Cryptographers’ Track at RSA Conference, LNCS 2612, 2003, pp.403-
416

[4] D. Coppersmith, “Finding a small root of a bivariate integer equation :
factoring with high bits known”, Advances in Cryptology: Proceedings
of EUROCRYPT ’96, LNCS 1070, 1996, p.178

[5] B. S. Kaliski, “Anderson’s RSA trapdoor can be broken”, Electronics
Letters, 1993, vol.29, no.15, p.1387

[6] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomi-
als with rational coefficients”, Mathematische Annalen, 1982, vol.261,
pp.515-534

15

[7] J. C. Lagarias, “Knapsack public key cryptosystems and diophantine
approximation”, Advances in Cryptology: Proceedings of CRYPTO ’83,
1984, pp.3-23

[8] D. R. Stinson, “Cryptography-Theory and Practice (2nd edition)”,
CHAPMAN & HALL/CRC, p.197

[9] A. Young, M. Yung, “The dark side of black-box cryptography or:
Should we trust capstone?”, Advances in Cryptology - CRYPTO ’96,
LNCS 1109, 1996, pp.89-103

[10] A. Young, M. Yung, “Kleptography : Using cryptography against cryp-
tography”, Adbvances in Cryptology - Eurocrypt ’97, LNCS 1233, 1997,
pp.62-74

[11] D. Boneh, G. Durfee, and Y. Frankel, “An attack on RSA given a small
fraction of the private key bits”, Advances in Cryptology - Asiacrypt
’98, LNCS 1514, 1998, pp.25-34

[12] C. P. Schnorr and M. Euchner, “Lattice Basis Reduction and Solv-
ing Subset Sum Problems”, Fundamentals of Computation Theory ’91,
LNCS 591, 1991, pp.68-85

16

Appendix

Generalities on Lattices

Definition 1. Let Rn be the n-dimensional real vector space and let B =
{b1, b2, . . . , bn} be a set of n linearly independent vectors in Rn. Then the
lattice generated by B is the set

L = {t1b1 + . . . + tnbn| t1, . . . , tn ∈ Z},

and B is called a basis of a lattice L.

That is, a lattice L is the set of linear combination of n linearly indepen-
dent vectors b1, . . . , bn with integer coefficients. Given an ordered lattice basis
{b1, b2, . . . , bn} ⊆ Rn, the Gram-Schmidt orthogonalization {b̂1, b̂2, . . . , b̂n} ⊆
Rn is defined by

b̂1 = b1, b̂i = bi −
∑i−1

j=1 µi,j b̂j for i = 2, . . . , n

where µi,j = < bi, b̂j > / < b̂j , b̂j > is the Gram-Schmidt coefficient. Then
we define the determinant of a lattice by

det(L) =

n
∏

i=1

‖b̂i‖.

Equivalently, the determinant can be represented by

det(L) = det([b1, . . . , bn][b1, . . . , bn]T)1/2,

given a lattice basis {b1, . . . , bn}.
Now, we are ready to define the crucial concept of a reduced basis.

Definition 2. An ordered basis {b1, . . . , bn} ⊆ Rn of L is called LLL-reduced

with δ if

|µi,j| ≤ 1/2 for 1 ≤ j < i ≤ n

δ‖b̂i−1‖2 ≤ ‖b̂i + µi,j b̂i−1‖2 for 1 < i ≤ n,

where 1/4 < δ ≤ 1.

17

The first property is called size-reduced. The absolute value of the Gram-
Schmidt coefficient, |µi,j|, means the ratio of the length of the projection

vector of bi to b̂j . Hence, the size-reduced property implies that the vec-
tors, b1, . . . , bn have short length or, equivalently, they are pairwise nearly
orthogonal, which is the goal of lattice basis reduction algorithm.

From now on, we investigate what the second property implies. We fix
δ = 3/4. From LLL-reduced conditions, we obtain that

‖b̂i‖2 ≥ (3/4− µ2
i,i−1)‖b̂i−1‖2

≥ 1/2 ‖b̂i−1‖2

for 1 < i ≤ n, which implies

‖b̂j‖2 ≤ 2i−j‖b̂i‖2 for 1 ≤ j ≤ i ≤ n.

By the definition of Gram-Schmidt orthogonalization and the above fact, we
have that

‖bi‖2 = ‖(b̂i +
i−1
∑

j=1

µi,j b̂j)‖2

= ‖b̂i‖2 +
i−1
∑

j=1

µ2
i,j‖b̂j‖2

≤ ‖b̂i‖2 +

i−1
∑

j=1

1

4
(2i−j)‖b̂i‖2

=
(

1 +
1

4
(2i − 2)

)

‖b̂i‖2

≤ 2i−1‖b̂i‖2

Therefore, we obtain the following result.

Proposition 1. Let {b1, b2, . . . , bn} be a LLL-reduced basis for a lattice L
in Rn, and let b̂1, b̂2, . . . , b̂n be vectors defined as above. Then we have

‖bj‖2 ≤ 2i−1‖b̂i‖2 for 1 ≤ j ≤ i ≤ n. (2)

18

Let v be a nonzero lattice vector, i.e. v ∈ L, v 6= 0. Then, v can be
written as

v =

n
∑

i=1

ribi =

n
∑

i=1

r̂ib̂i.

with ri ∈ Z and r̂i ∈ R (1 ≤ i ≤ n). Suppose that i is the largest index with
ri 6= 0. Then we have

i−1
∑

k=1

rkbk + ribi =

i−1
∑

k=1

r̂kb̂k + r̂ib̂i

=

i−1
∑

k=1

(r̂k − µi,k)b̂k + r̂ibi.

We note that {b1, b2, . . . , bi−1} and {b̂1, b̂2, . . . , b̂i−1} span the same space and
bi does not belong to this space. Inductively, we compute all the components
of v in terms of r̂k and µi,k relative to the basis {b1, b2, . . . , bn}, where 1 ≤
k ≤ i. This gives the result, ri = r̂i. Then we obtain

‖b̂i‖2 ≤ r̂2
i ‖b̂i‖2 ≤ ‖v‖2, (3)

since ri ∈ Z and ri 6= 0. By setting j = 1 in (2), we have that

‖b1‖2 ≤ 2i−1‖b̂i‖2 ≤ 2n−1‖b̂i‖2. (4)

Facts (3) and (4) imply the following result.

Proposition 2. Let {b1, b2, . . . , bn} be a reduced basis of lattice L. Then

‖b1‖2 ≤ 2n−1‖v‖2 (5)

for every nonzero lattice vector v ∈ L.

Let v1, v2, . . . , vl be linearly independent lattice vectors in L. Then we
can express vj =

∑n
i=1 rijbi, where rij ∈ Z and 1 ≤ j ≤ l. If we set ij to be

the largest i with rij 6= 0 for every fixed j, then by (3) we have

‖vj‖2 ≤ ‖b̂ij‖2 for 1 ≤ j ≤ l. (6)

Then, we renumber vj such that i1 ≤ i2 ≤ · · · ≤ il. Suppose j > ij for
1 ≤ j ≤ l. Then, v1, v2, . . . , vj become linearly dependent, since all of them

19

belong to
∑j−1

i=1 Rbi. This contradicts the assumption that v1, v2, . . . , vl are
linearly independent lattice vectors. Hence, with the fact j ≤ ij and (6), we
obtain that

‖bj‖2 ≤ 2ij−1‖b̂ij‖2 ≤ 2n−1‖b̂ij‖2 ≤ 2n−1‖vj‖2

for j = 1, 2, . . . , l. Hence, we have the following result.

Proposition 3. Let {b1, b2, . . . , bn} be a reduced basis of lattice L in Rn,
and let v1, v2, . . . , vl ∈ L be linearly independent lattice vectors. Then we
have

‖bj‖2 ≤ 2n−1 max{‖v1‖2, ‖v2‖2, . . . , ‖vl‖2} (7)

for j = 1, 2, . . . , l.

For our lattice L, we define the i-th successive minimum λi of lattice
L relative the Euclidean norm ‖ ‖ to be the smallest real number r such
that there are i linearly independent vectors in L of length at most r. In
other words, λi is the smallest radius of a ball that is centered at the origin
and which contains i linearly independent lattice vectors. Then the previous
results (2) and (7) induce the following conclusion.

Theorem 3. Every LLL-reduced basis {b1, b2, . . . , bn} ⊆ Rn for a lattice L
with δ satisfies

21−iλ2
i ≤ ‖bi‖2 ≤ 2n−1λ2

i ,

for 1 ≤ i ≤ n.

The above theorem allows the second property of LLL-reduced basis to
give good approximations of the values ‖bi‖ to the successive minima λi. This
guarantees the LLL-reduced basis has good approximation to the shortest lat-
tice basis.

LLL-reduction Algorithm
We first describe a size reduction algorithm which is used as a subroutine
in the LLL-reduction algorithm with integer lattice bases as input. This
algorithm takes integral lattice basis b1, b2, . . . , bn ∈ Zn and corresponding

20

Gram-Schmidt coefficients µi,j for 1 ≤ j < i ≤ n and returns lattice ba-
sis b1, b2, . . . , bn with a size-reduced bk and updated corresponding Gram-
Schmidt coefficients. For the Gram-Schmidt coefficient µi,j, we define ri,j as
ri,j = dµi,j − 1/2e. Then it is clear that |µi,j − ri,j | < 1/2 and we will apply
this fact to get a size-reduced vector.

Algorithm 11. Size-Reduction(bk)

for j = k − 1 downto 1
do if |µk,j| > 1/2,

then bk ← bk − rk,jbj

for i = 1 to n do µk,i ← µk,i − rk,jµj,i

The correctness can be shown by an induction on the number of iterations.
The idea is that we first assume that |µk,j| > 1/2 for some 1 ≤ j ≤ k − 1.
Then we update bk with bk − rk,jbj and also Gram-Schmidt coefficients µk,i

with µk,i − rk,jµj,i for 1 ≤ i ≤ n. Let’s denote each updated vector and
coefficient as b′k and µ′

k,i. The updated coefficient µ′
k,i is reasonable, since

µ′
k,i =

< b′k, b̂i >

< b̂i, b̂i >

=
< bk − rk,ibj , b̂i >

< b̂i, b̂i >
= µk,i − rk,iµj,i.

The updated coefficients give a desired result, |µ′
k,j| = |µk,j − rk,j| < 1/2, for

i = j. On the other hand, for i = j + 1, . . . , k − 1 we don’t have to check if
|µk,i| ≤ 1/2, since

|µ′
k,i| = |µk,i − rk,jµj,i|

= |µk,i|.

This is clearly at most 1/2. This is the reason why we do the iterations in
reverse order from k − 1 to 1.

Now we present a LLL-reduction algorithm which takes as an input or-
dered basis b1, b2, . . . , bn ∈ Zn and δ ∈ [1/4, 1] and returns LLL-reduced
lattice basis.

21

Algorithm 12. LLL-Reduction

(Pre-computation)
set k = 2 (k is a stage)

compute µi,j for 1 ≤ j < i ≤ n and ‖b̂i‖2 for i = 1, 2, . . . , n
(Main-computation)

while k ≤ n do
Size-Reduction(bk)

if δ‖b̂k−1‖2 > ‖b̂k + µk,k−1b̂k−1‖2
then swap bk and bk−1

update ‖b̂k‖2, ‖b̂k−1‖2 and µi,u, µu,i

for u = k − 1, k and i = 1, . . . , n.

else k ← k + 1

Assuming a new LLL-reduced lattice basis {v1, . . . , vn} is constructed
from a lattice basis {b1, . . . , bn} of L, we have

‖v1‖ ≤ 2n/2 det(L)1/n and ‖v2‖ ≤ 2n/2 det(L)1/(n−1),

where v1 and v2 are the two shortest vectors in the new basis [12].
Let’s describe what happens in the above algorithm. We denote

∑k−2
i=1 Rb̂i

as the space of linear combinations of vectors b̂1, b̂2, . . . , b̂k−2 with any real
number coefficients. Then we can check easily that b̂k−1 is the projection of
bk−1 to the orthogonal complement of

∑k−2
i=1 Rb̂i and also that b̂k +µk,k−1b̂k−1

is the projection of bk to the orthogonal complement of
∑k−2

i=1 Rb̂i, since bk =

(b̂k + µk,k−1b̂k−1) +
∑k−2

i=1 µk,j b̂i. Suppose we are at the k stage. Then we
see if the two ordered vectors bk and bk−1 satisfy the second condition of
LLL-reduction. If they do, we proceed to next stage k + 1 and investigate
two vectors bk and bk+1. Otherwise, we swap two vectors bk and bk−1 with
the other vectors unchanged. We now describe what happens in this process.
We denote W as the orthogonal complement of

∑k−2
i=1 Rb̂i. Then we have

1

δ
‖ProjW bk‖2 < ‖ProjW bk−1‖2,

which implies that

δ‖ProjW bk‖2 < ‖ProjW bk−1‖2,

22

since 1/4 < δ < 1. After interchanging two vectors, we have the ordered
lattice basis {b1, b2, . . . , bk−2, bk, bk−1, bk+1, . . . , bn}. We rename this ordered
basis as {b′1, b′2, . . . , b′n} as follows:

b′i =







bk−1 if i = k
bk if i = k − 1
bi otherwise.

Now, we have that

δ‖ProjW b′k−1‖2 < ‖ProjW b′k‖2,

which is equivalent to

δ‖b̂′k−1‖2 < ‖b̂′k + µk,k−1b̂
′
k−1‖2.

After this procedure, we know that b′k−1 and b′k satisfy the second condition
of the reduced basis, but we have to check b′k−1 and b′k−2.

We now show the algorithm terminates after polynomially many itera-
tions. We take a value of δ as 3/4. Given a lattice basis {b1, . . . , bn}, we
define

D =
n

∏

i=1

(det[b1, . . . , bi])
2.

Since det(L)2 ∈ Z, we have D2 ∈ N by the definition of D. We note that
a call Size-Reduction does not change the absolute value of determinant.
If two vectors bk and bk−1 are exchanged, D is affected by a change from
(det [b1, . . . , bk−2, bk−1])

2 to (det [b1, . . . , bk−2, bk])
2, while (det[b1, . . . , bk])

2 is
unchanged. Then D is updated by

D · (det[b1, . . . , bk−2, bk])
2

(det[b1, . . . , bk−2, bk−1])2
,

which is equivalent to

D · ‖ProjW bk‖2
‖ProjW bk−1‖2

,

where W is the orthogonal complement of
∑k−2

i=1 Rb̂i. By the above argument,
this can be written by

D · ‖b̂k + µk,k−1b̂k−1‖2

‖b̂k−1‖2
.

23

Since ‖b̂k + µk,k−1b̂k−1‖2 < 3
4
‖b̂k−1‖2, D is updated to a value less than 3

4
D.

Hence, the number of iterations t is bounded by (3
4
)2tD2 > 1, which implies

t < log3/4 D. Therefore, the total number of iterations for while loop are
at most log3/4 D + n, where we observe k increases whenever a swap does
not happen. Since D can be computed within polynomial time, we finally
conclude that the LLL-reduction algorithm terminates in polynomially many
iterations.

Finally, it remains to prove the correctness of the LLL-reduction algo-
rithm. We show this by an induction on the number of stages. The induction
hypothesis is that we have LLL-reduced lattice basis vectors b1, . . . , bk−1. As
a base case, it is clear for k = 2. Since a call Size-Reduction(bk) only up-
dates bk and µk,i for i = 1, 2, . . . , k − 1, the vectors b1, . . . , bk−1 are still
LLL-reduced. If the condition in line 3 is not satisfied, the vectors b1, . . . , bk

are LLL-reduced, since these are already size-reduced and b1, . . . , bk−1 satis-
fies the second LLL-reduced condition. Hence, we conclude that the output
of lattice basis vectors are LLL-reduced at the final stage k = n + 1.

If we let M ∈ R be such that ‖bi‖2 ≤M for 1 ≤ i ≤ n, the total number
of arithmetic operations is performed in O(n4 log M) on integers of length
O(n log M).

24

