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Abstract

In this essay we analyze properties of the lifted-cut linear pro-
gramming relaxation of the Steiner Forest problem introduced by
Könemann, Leonardi and Schäfer. We introduce this new formula-
tion and prove some basic properties establishing that it is in fact a
valid relaxation and analyzing the integrality gap. We are interested
in analyzing the possible half-integrality of this relaxation and con-
struct some families of graphs for which the unweighted minimum
spanning tree instance defined by this relaxation has half-integral
optimal solutions. Finally we described some computational and im-
plementation issues, namely describing a polynomial sized flow for-
mulation and rounding procedures that we used to find half-integral
optimal solutions. We list the results of a computational study we
conducted on Steiner Tree instances, stating half-integrality prop-
erties, as well as comparing the integrality gap with that of the
standard undirected-cut relaxation.
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Chapter 1

Introduction

We present the lifted-cut linear programming relaxation for the
Steiner forest problem by Könemann, Leonardi, Schäfer and van
Zwam in [3]. The formulation arises from an algorithm for con-
structing approximately budget-balanced cross-monotonic cost shar-
ing mechanism for the Steiner forest problem. The approximation
algorithm by Könemann, Leonardi, Schäfer in [2], is a modifica-
tion of the primal-dual algorithm of Agarwal, Klein and Ravi in
[1], which constructs a primal and dual solution for the standard
undirected-cut linear programming relaxation simultaneously. How-
ever, the dual solution constructed by this new algorithm assigns
values to variables that are not even present in the undirected-cut
dual, prompting the question of constructing an alternate LP re-
laxation for which this dual is feasible, answered by the lifted-cut
relaxation. In this chapter, we first describe the algorithm to moti-
vate the new formulation, and then proceed to examine some basic
properties of this relaxation.

1.1 Preliminaries

The problem under consideration is the Steiner forest problem,
which is known to be NP-hard. It is a generalization of the well-
studied Steiner Tree problem, as we will see in the following chapters.
We are given an undirected graph G = (V,E), a non negative cost
function on the edge set c : E → R+ and a set of k ∈ N terminal pairs
R = {(s1, t1), ..., (sk, tk)}. The problem is to find a minimum-cost set
of edges F ⊆ E such that each terminal pair (si, ti) lies in the same

1



1. INTRODUCTION

component of the forest induced by F . We abuse notation and also
use the set R to denote the set of all terminals, i.e., R =

⋃k

i=1{si, ti}.
The set we are referring to will be clear from the context. We assume
that each terminal v ∈ R belongs to a unique terminal pair without
loss of generality, as we can add a copy of v for each additional
terminal pair and connect these copies to the original by zero-cost
edges. We refer to the (unique) mate of any terminal v ∈ R as v̄,
i.e. (v, v̄) ∈ R.

We define the time of death (or death time) of a terminal pair
(v, v̄) ∈ R to be d(v, v̄) = 1

2
c(v, v̄), where c(v, v̄) denotes the cost

of the miminum cost v, v̄-path in G. Define the death time of a
terminal v ∈ R to be equal to the death time of its corresponding
terminal pair, i.e.,

d(v) = d(v̄) =
1

2
c(v, v̄) ∀v ∈ R.

We now define some terms relating to cuts before we describe
the working of the algorithm, which we will call KLS (introduced
in [2]). A set of vertices is called a Steiner cut if it separates at
least one terminal pair in R. Formally, U ⊂ V is a Steiner cut if
there exists a terminal pair (s, t) ∈ R such that |{s, t} ∩ U | = 1.
Let S denote the set of all Steiner cuts. A non-Steiner cut is a
set that contains at least one terminal pair and does not separate
any terminal pairs in R. Formally, U ⊆ V is a non-Steiner cut if
there exists a terminal pair (s, t) ∈ R such that s, t ∈ U and for all
terminal pairs (s′, t′) ∈ R, |{s′, t′} ∩ U | 6= 1. Let N denote the set
of all non-Steiner cuts. Further, let U = S ∪ N be the set of all
Steiner and non-Steiner cuts.

1.2 The KLS Algorithm

The KLS algorithm of Könemann, Leonardi and Schäfer, intro-
duced in [2], computes cross-monotonic cost shares for the terminal
pairs, in order to construct an approximately budget-balanced group
strategyproof cost sharing mechanism for the Steiner Forest game.
For explanations of these terms and more details on this refer to
the aforementioned paper [2] and the paper by Jain and Vazirani
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1.2. THE KLS ALGORITHM

[6], that outlines a general technique for constructing these mecha-
nisms.

The algorithm computes a cost share for each terminal pair in
R, while assigning values to ‘dual variables’ yU for all U ∈ U . The
algorithm can be viewed as a continuous process over a time variable
τ ≥ 0. The algorithm maintains a ‘dual solution’ yτ , as well as a
forest F τ at all times τ . We use the term moats, to refer to the
components of the forest F τ . Let A τ denote the set of active moats
at time τ , defined as moats that contain at least one terminal with
death time greater than τ . We initialize F 0 to be the set of all
singleton terminals and y0

U = 0 for all U ∈ U .

KLS uniformly raises the dual variables for all active moats, i.e.
sets in A τ , uniformly at all times τ ≥ 0. Suppose an edge from a
vertex a in an active moat U to a Steiner vertex b outside it becomes
tight at time τ , i.e.

c({a, b}) =
∑

{a,b}∈δ(S)
S∈U

yτ
S.

We then add {a, b} to F , replacing U with the set U ∪ {b} in
A τ and continue. Similarly, suppose two active moats U1 and U2

collide at time τ , i.e. there is an edge {a, b} with a ∈ U1 and b ∈ U2

such that {a, b} becomes tight at time τ . Then, we add {a, b} to
F τ , effectively removing U1 and U2 and adding U1 ∪U2 to A τ . The
algorithm terminates when A τ is empty. This must happen as all
death-times are finite.

For terminal v ∈ R with death time τ ≤ d(v), let U τ (v) denote the
moat in A τ that contains v. Additionally, let aτ (v) be the number
of active terminals in U τ (v), i.e. terminals with death time at least
τ . The cost share of v is then given by:

ξR(v) =

∫ d(v)

τ=0

1

aτ (v)
dτ

and, let ξR(v, v̄) = ξR(v) + ξR(v̄).
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1. INTRODUCTION

It is shown in [3] that the cost of the dual produced by KLS, i.e.,
∑

U⊆V yU , is at most twice the cost of the optimal Steiner forest.
So we pose the problem of designing an LP relaxation for which
the y constructed by the algorithm is a feasible dual solution and
the quantity

∑

U⊆V yU is the objective value. The lifted-cut LP
relaxation is formulated as a solution to this problem. We may
thus interpret KLS as a primal-dual 2-approximation algorithm for
Steiner Forests with this new LP relaxation.

1.3 Lifted-Cut Relaxation

In this section we describe the lifted-cut LP relaxation and prove
some basic properties that establish that it is a valid relaxation, as
it is not immediately evident looking at the relaxation itself. The
relaxation arises when we try to design a LP relaxation for which the
dual variables generated by the KLS algorithm are feasible. We also
establish that in terms of objective value, this relaxation is at least
as good as the classical relaxation, which we analyze experimentally
with a computational study in Chapter 3. The results in this section
were established in the paper [3] that introduced this relaxation.

To define the relaxation, we first index the terminal pairs R =
{(s1, t1), ..., (sk, tk)} so as to satisfy d(s1, t1) ≤ ... ≤ d(sk, tk), with-
out loss of generality. Define a precedence order ≺ on the set of
terminal pairs by (si, ti) ≺ (sj, tj) iff i ≤ j. We extend this order to
terminals by setting s1 ≺ t1 ≺ s2 ≺ t2 ≺ ... ≺ sk ≺ tk. We assume
v ≺ v for all v ∈ R.

We look to construct a dual LP based on the algorithm, to ensure
feasibility of the constructed solution. Let Sv ⊆ S be the set of
Steiner cuts that separate v and v̄, where (v, v̄) is the highest ranked
terminal pair separated by that cut, i.e.,

Sv = {U ∈ S | v ∈ U, v̄ /∈ U, (u, ū) ≺ (v, v̄) for all (u, ū) ∈ R(U)}

where R(U) = {(s, t) ∈ R | |{s, t} ∩ U | = 1}. Note that the
sets Sv partition the set of all Steiner cuts S . We say that v is
responsible for a Steiner cut U , if U ∈ Sv. Similarly, let Nv ⊆ N
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1.3. LIFTED-CUT RELAXATION

be the set of non-Steiner cuts where (v, v̄) is the highest ranked
terminal pair, i.e.,

Nv = {U ∈ N | {v, v̄} ⊆ R ∩ U, (u, ū) ≺ (v, v̄), ∀{u, ū} ⊆ R ∩ U}.

We say that v is responsible for a non-Steiner cut, if U ∈ Nv.
Note that if v is responsible for a non-Steiner cut, then v̄ is also
responsible for it. Also note that every U ∈ U has some (exactly
one) terminal that is responsible for it. Then the lifted-cut dual,
which we denote (LC-D) is given by:

optLC-D = max
∑

U∈U

yU (1.3.1)

s.t.
∑

U∈U

e∈δ(U)

yU ≤ c(e) ∀e ∈ E (1.3.2)

∑

U∈Sv

yU +
∑

U∈Nv

yU ≤ d(v) ∀v ∈ R (1.3.3)

yU ≥ 0 ∀U ∈ U . (1.3.4)

We can see intuitively that this dual is formulated with the KLS
dual solution in mind, as we stop increasing yU (i.e., remove U from
A τ ) precisely when either one of the two inequalities 1.3.2 and 1.3.3
become tight. The primal, which we label (LC-P), is then given by:

5



1. INTRODUCTION

optLC-P = min
∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv (1.3.5)

s.t.
∑

e∈δ(U)

xe + xv ≥ 1 ∀v ∈ R,∀U ∈ Sv (1.3.6)

∑

e∈δ(U)

xe + xv + xv̄ ≥ 1 ∀v ∈ R,∀U ∈ Nv (1.3.7)

xe, xv ≥ 0 ∀e ∈ E,∀v ∈ R. (1.3.8)

This LP was defined so that the dual constructed by the KLS
algorithm is feasible for (LC-D). We will now show that the above
LP is indeed a relaxation for the Steiner forest problem, meaning
that integral solutions do correspond to feasible Steiner forests and
that the optimal objective value of the LP is at most the cost of
the optimal Steiner forest. We then state some properties of the
performance of this LP, particularly in comparison to the classical
undirected-cut formulation. A simple projection to the edge vari-
ables does not make this a valid relaxation. We need to convert the
terminal variables into edges as follows.

1.3.1 Lemma. Let x be a feasible integral solution for (LC-P).
Then there is a feasible Steiner forest of cost at most

∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv.

Proof. We initially define the set F = {e ∈ E : xe = 1} that will
be the edge set of our feasible Steiner forest. Note that if F contains
cycles, we may successively delete cycle edges to ensure it is a forest.
If this forest is infeasible, there exists a Steiner cut U ∈ S , such
that δ(U) ∩ F = ∅. Let v be the terminal responsible for U in our
LP relaxation and let v̄ be the mate of v. Note that it must be the
case that Ū = V \U ∈ Sv̄. Since δ(U) = δ(Ū), the constraint (1.3.6)
for U and Ū give us that xv = xv̄ = 1.

We can then add all the edges along the shortest path between v
and v̄ to F for an additional cost of 2d(v, v̄). This then satisfies the
constraint (1.3.6) for all Steiner cuts in Sv and Sv̄. We can repeat
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1.3. LIFTED-CUT RELAXATION

this for all U that violate the cut requirement for a total cost of at
most

∑

v∈R d(v)·xv. The initial cost of F was at most
∑

e∈E c(e)·xe,
and adding the two gives us the required bound on the cost.

We now show that the objective value of the LP is bounded above
by the cost of the optimal Steiner tree, which we denote optR.

1.3.2 Lemma. Let F be a feasible solution for the given Steiner
forest instance. There exists a half-integral feasible solution x to
(LC-P) satisfying:

∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv ≤ c(F ).

Therefore, optLC−P ≤ optR.

Proof. We construct a solution x that is feasible for (LC-P) and
show the following inequality that for each tree T ∈ F with vertex-
set V (T ) and edge-set E(T ):

∑

e∈E(T )

c(e) · xe +
∑

v∈R∩V (T )

d(v) · xv ≤ c(T ).

The inequality stated then follows by summing over all T ∈ F .
Let T be an arbitrary tree in F and let u be the highest ranked
terminal in V (T ). Let Puū denote the shortest path between u and
ū in T . Let xe = 1

2
for all edges e ∈ E(Puū) and xe = 1 for all

other edges in E(T ). Also, let xu = xū = 1
2

and xv = 0 for all other
v ∈ R ∩ V (T ). By the definition of death time 1

2
· c(Puū) ≥ d(u, ū).

So the objective value of x restricted to T satisfies:

∑

e∈E(T )

c(e) · xe +
∑

v∈R∩V (T )

d(v) · xv ≤ c(T ).

We can do the same for each T ∈ F and add up these inequalities
to get the required bound on the cost of x. It only remains to be
shown that x thus constructed is feasible. So consider some Steiner
cut U ∈ Sv where v ∈ R ∩ V (T ). If U contains exactly one of u
and ū, then it must be the case that v = u or v = ū. The boundary
δ(U) must also intersect Puū at least once, at some edge e. Then
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1. INTRODUCTION

xu + xe = 1 (or xū + xe = 1) satisfies the constraint (1.3.6). If U
contains none or both of u and ū, then it either does not intersect
Puū or intersects it at least twice. In the first case δ(U) contains
some edge e ∈ E(T )\E(Puū) and we have xe = 1. In the second
case let e and e′ be two edges in E(Puū) ∩ δ(U), then xe + xe′ = 1,
showing that x always satisfies constraint (1.3.6).

For a non-Steiner cut U ∈ Nv with v ∈ V (T ), we have two cases
again. Either v ∈ {u, ū} or not. If v /∈ {u, ū}, we know that both
u and ū are not in U , otherwise it would either be a Steiner cut or
u and ū would be responsible for U . But then similar to above, U
either does not intersect Puū or intersects it at least twice, satisfying
constraint (1.3.7). If v = u or v = ū, then since U is a non-Steiner
cut, it must contain both u and ū and xu + xū = 1 shows that
constraint (1.3.7) is always satisfied, proving the lemma.

We will now prove a result stating the lifted-cut dual (LC-D) is at
least as strong as the standard undirected-cut relaxation dual. The
undirected-cut primal, which we denote (P ) is given by:

optP = max
∑

e∈E

c(e)xe (1.3.9)

s.t.
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ S , (1.3.10)

xe ≥ 0 ∀e ∈ E. (1.3.11)

The corresponding dual (D) is given by:

optD = max
∑

U∈S

yU (1.3.12)

s.t.
∑

U∈S

e∈δ(U)

yU ≤ c(e) ∀e ∈ E (1.3.13)

yU ≥ 0 ∀U ∈ S . (1.3.14)
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1.3. LIFTED-CUT RELAXATION

1.3.3 Lemma. Let y be a feasible solution for (D), then there is a
feasible solution y′ for (LC-D) that satisfies

∑

U∈S

yU ≤
∑

U∈U

y′
U

implying that optD ≤ optLC−D.

Proof. We construct y′ from y by letting

y′
U = y′

Ū =
yU + y′

Ū

2

and y′
U = 0 for all non-Steiner cuts U ∈ N .

To see that y′ satisfies all constraints, first note that U is a Steiner
cut if and only if Ū = V \U is one too. Then the constraint (1.3.13)
gives us:

c(e) ≥
∑

U∈S

e∈δ(U)

yU =
∑

U∈S

e∈δ(U)

yU + yŪ

2
=

∑

U∈S

e∈δ(U)

y′
U =

∑

U∈U

e∈δ(U)

yU

where the last equality holds because y′
U = 0 for all non-Steiner

cuts U . Thus, y′ satisfies (1.3.2).

Now, suppose that y′ violates constraint (1.3.3) for some terminal
v ∈ R with mate v̄. Since all non-Steiner cuts are zero, this implies

∑

U∈Sv

y′
U > d(v) =

c(Pvv̄)

2
(1.3.15)

where Pvv̄ is the minimum cost v, v̄ path in G. Now note that
the set Sv ∪ Sv̄ ⊆ {U ∈ S : e ∈ δ(U), e ∈ E(Pvv̄)}, since every
Steiner cut separating v and v̄ must intersect an edge of the path
Pvv̄. Adding up the y′ variables over the set Sv ∪ Sv̄ gives

∑

U∈Sv

y′
U +

∑

U∈Sv̄

y′
U ≤

∑

e∈E(Pvv̄)

∑

U∈S

e∈δ(U)

yU .
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1. INTRODUCTION

Noting the symmetry in the definition of y′ (i.e., y′(U) = y′(Ū))
and the fact that U ∈ Sv ⇐⇒ U ∈ Sv̄, the LHS above becomes
2 ·

∑

U∈Sv
y′

U . Then adding up constraints (1.3.13) over all edges in
Pvv̄ we get the RHS, implying

2 ·
∑

U∈Sv

y′
U ≤ c(Pvv̄)

contradicting (1.3.15).

It is shown in [1] that the optD ≤ optR ≤ 2 · optD, which with
the above result along with Lemma 1.3.2 imply the same bound for
(LC-D), i.e. optLC−D ≤ optR ≤ 2 · optLC−D. This also shows that
the forest generated by the KLS algorithm is a 2-approximation to
the optimal Steiner forest.

Könemann, Leonardi, Schäfer and van Zwam [3] also showed that
there exist instances where the above inequality is strict by con-
sidering a spanning tree instance on a cycle Cn with unit weight
edges. In section 2.2 we show that in this case the optimal solu-
tion for the lifted-cut relaxtion has cost approximately 3n

4
, while the

optimal for the undirected-cut relaxation is n
2

(obtained by setting
xe = 1

2
for each edge). Similarly, they show that the IP/LP gap for

this relaxtion is exactly 2 by considering a spanning tree instance
on a complete graph Kn with unit weight edges, which clearly has
optR = n − 1. In section 2.1 we show that the optimal solution for
the lifted-cut relaxation is n

2
, showing the gap is arbitrarily close to

2.
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Chapter 2

Half-Integrality Properties

We are interested in classifying instances when we are guaranteed
optimal half-integral solutions (when all variables in the optimal
solution have values 0, 1/2 or 1) to (LC-P), as rounding up to an in-
teger solution immediately gives us an LP-based 2-approximation al-
gorithm that is at least as strong as KLS (or as strong as solving the
undirected-cut LP). Certain Steiner tree instances have been shown
to yield integer polytopes with the undirected-cut formulation, par-
ticularly instances defined on series-parallel graphs, as shown by
Goemans in [4]. We are interested in a weakened version of this
question for (LC-P), that is just to classify some half-integral in-
stances. In this chapter, we first show that the classical undirected-
cut LP relaxation is not always half-integral. We then show that
for certain special cases of the problem, the polytope defined by the
lifted-cut relaxation always admits a half-integral solution.

We construct some special classes of unweighted (i.e. unit weight
on all edges) graphs for which the minimum spanning tree instance
defined by (LC-P) has a half-integral optimal solution. Note that
we define the terminal set R for the MST problem by picking some
root vertex v0 and letting R = {(v, v0)|v ∈ V \{v0}}. Of course, by
our convention of at most one terminal per vertex we need to create
|V | − 1 new terminal vertices that are connected to v0 by zero-cost
edges. For convenience, we will still refer to xv0

, but will be explicit
in mentioning its mate. When we refer to xv for any other vertex,
the corresponding pair is implicitly (v0, v).

11



2. HALF-INTEGRALITY PROPERTIES

For the primal solution, we may just assign xe = 1 for all these
zero-cost edges without affecting optimality. Therefore any cuts con-
taining such edges in the boundary are trivially satisfied. Similarly
by the dual constraint (1.3.2) on these zero edges, the dual variables
for these cuts must also be zero. Hence, when we speak of cuts, we
may contract all the terminals onto v0 for simplicity.

We need to be explicit with the choice of root (when we are talking
about a Steiner tree or spanning tree instance) and the ordering of
terminal pairs (only in case of ties), as the objective value and half-
integrality of the optimal solution can vary based on these parame-
ters. We are interested if there always exists a root and an ordering
such that the unweighted spanning tree instance has a half-integral
optimal solution.

It is well known that the undirected-cut relaxation is not always
half-integral. We begin by presenting an example by Vazirani from
[7] showing this. The optimal lifted-cut solution was given in [3].

2.0.4 Lemma. Consider the Peterson graph G = (V,E) and the
spanning tree problem (i.e. R = (v, w) for some v ∈ V and all
w ∈ V \{v}) with each edge having unit cost. The undirected cut
relaxation (P ) does not have a half-integral optimal solution for
this instance, while the lifted-cut relaxation (LC-P) does have a
half-integral optimal solution.

Proof. Consider the solution x̂ to (P ) given by assigning x̂e = 1
3

for all edges e ∈ E. We know that the Peterson graph is 3-edge
connected, so every cut must be crossed by at least three edges,
satisfying the cut constraint. We argue that this must be optimal.
The sum of all xe adjacent to a given vertex must be at least 1, by
the corresponding cut constraints. Summing up this quantity over
all vertices, gives us twice the sum of the xe over all edges.

10 ≤
∑

v∈V

∑

e∈δ({v})

xe = 2
∑

e∈E

xe.

But this lower bound is matched by the solution x̂, proving that
it must be optimal. Now suppose we had a half-integral solution x̃
of the same cost. If x̃ē = 1 for some edge ē = {u, v}, then consider

12



the cut {u, v}. The constraint for this cut implies that for some
e′ 6= ē adjacent to u, we have xe′ > 0, without loss of generality.
But from above we know that since x̃ is optimal, it must be the case
that

∑

e∈δ({u})

x̃e = 1,

a contradiction. So, now consider the set of edges Ẽ = {e ∈
E | x̃e = 1

2
}. Since we know the cost of the solution to be 5, we can

conclude that |Ẽ| = 10. By the analysis above, there are exactly
two edges of Ẽ adjacent to each vertex in V . But this implies that
Ẽ are the edges of a Hamiltonian cycle, a contradiction because the
Peterson graph is known to have no Hamiltonian cycles.

Now, we construct a feasible half-integral primal solution and a
dual solution of the same cost for this instance with the lifted-cut
relaxation. We may pick any vertex v0 as the root (all vertices are
equivalent due to node symmetry) for the terminal set. Note that
there is always a Hamiltonian path starting at v0 and terminating
at some v̄0 at maximum distance (which is 2) from v0. For instance,
Figure 2.1, shows such a Hamiltonian path, and under automor-
phisms this exists for all choices of root.

Then, we construct the half-integral optimal solution x′ as follows.
Let v̄0 be some vertex that is at distance 2 away from v0. Set (v0, v̄0)
to be the top ranked terminal pair. Note that the ordering of the
rest of the pairs is irrelevant in the case of multiple pairs with equal
death times. Let P = 〈v0, . . . , v̄0〉 be the Hamiltonian path from
above. Then, let x′

v0
= 1

2
from the pair (v0, v̄0) and x′

v̄0
= 1

2
and

x′
v = 0 for all other terminals. Let x′

e = 1
2

for all e ∈ E(P ) and
x′

e = 0 otherwise.

Any Steiner cut containin neither or both end points of P must
intersect P twice, and thus x′

e = 1
2

for those two edges ensures that
the constraint 1.3.6 is satisfied. Any Steiner cut containing exactly
one of v0 and v̄0 intersect the path at least once and the 1

2
on that

edge together with x′
v0

= 1
2

or x′
v̄0

= 1
2

satisfies the constraint 1.3.6.
The only non-Steiner cut for an MST instance is V itself and the
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2. HALF-INTEGRALITY PROPERTIES

Figure 2.1: Hamiltonian path between top ranked pair on the Peterson graph

corresponding constraint 1.3.7 is satisfied by x′
v0

= x′
v̄0

= 1
2
. Thus,

x′ is feasible for (LC-P) and has cost 5.5.

We construct a feasible dual solution y′ of equal cost, proving
optimality of both by weak duality. Let y′

{v} = 1
2

for all v ∈ V ,

y′
V = 1

2
and y′

U = 0 for all other subsets U ⊂ V . All vertices except

v0 and v̄0 contain exactly one terminal on them with death time 1
2

or
1 and are only responsible for the singleton cuts (among all non-zero
cuts), satisfying constraint 1.3.3. Terminal v0 on pair (v0, v̄0) and
terminal v̄0 are both responsible for the non-Steiner cut V as well as
the respective singleton cuts, satisfying constraints 1.3.3 since their
death times are 1. Constraints 1.3.2 are satisfied trivially, since
the only non-zero cuts containing any edges in their boundary are
singletons and edges have unit cost. One can see that the solution
y′ has the same cost 5.5, concluding the proof.

14



2.1. HAMILTONIAN PATH BETWEEN TOP PAIR

2.1 Hamiltonian Path Between Top Pair

The only property of the Peterson graph that we used to construct
the half-integral optimal solution above was the existence of the
Hamiltonian path between the top-ranked terminal pair. We then
naturally generalized the above solution as follows. Suppose we
have some pair of vertices u and v, such that c(u, v) ≥ c(u,w) for
all w ∈ V and there exists a Hamiltonian path P = 〈u, . . . , v〉.
Then letting u be the root for the terminal set and setting (u, v) as
the highest ranked terminal pair, we get a half integral solution of

cost |V |−1
2

+ d(u, v) as follows. Note that the ordering of the rest of
the pairs is irrelevant in the case of multiple pairs with equal death
times. We explicitly construct this solution as follows: xu = 1

2
for

the pair (u, v), xv = 1
2

and xw = 0 for all other w ∈ R, xe = 1
2

for
all e ∈ E(P ) and 0 otherwise.

As any Hamiltonian path must contain |V | − 1 edges, the cost

of the edges on this path is |V |−1
2

. The solution x is feasible, since
any Steiner cuts that contain neither u or v, or both u and v, must
intersect P twice on edges e1 and e2 and xe1

+ xe2
= 1. Steiner cuts

containing exactly one of u or v must intersect P at least once at
some edge e1 and xe1

= xu = xv = 1
2

(for the pair (u, v)) satisfies
the constraint. The only non-Steiner cut for any MST instance is
V itself, and since we set (u, v) to be the highest ranked pair and
xu + xv = 1 for this pair, this proves feasibility for the primal.

We construct a feasible dual solution of equal cost as follows:
y{u} = 1

2
for all u ∈ V , yV = d(u, v) − 1

2
and yU = 0 for all other

U ∈ U . Since the cost of all the singletons is |V |
2

, this solution can
be seen to have the same cost as the primal above, so we just need
to check for feasibility. By construction, the constraints (1.3.2) are
satisfied with equality for each edge of the graph. Because the death
time of each terminal is at least 1

2
, all terminals on vertices except

V \{u, v} satisfy constraint (1.3.3). The vertices u and v are both
responsible for the non-Steiner cut V as well as the singleton Steiner
cuts and thus satisfy (1.3.3) with equality, proving dual feasibility
and half-integrality for such graphs. We can therefore conclude the
following theorem.

15



2. HALF-INTEGRALITY PROPERTIES

2.1.1 Theorem. Given an graph G = (V,E), if there exists a pair
of vertices u and v, such that c(u, v) ≥ c(u,w) for all w ∈ V and a
Hamiltonian path from 〈u, · · · , v〉, then for a certain choice of root
and certain ordering, there exists a half-integral optimal solution to
(LC-P) on the unweighted MST instance defined on G with objective

value |V |−1
2

+ c(u,v)
2

.

2.2 Cycles

We also constructed optimal half-integral solutions for the unit-
edge-weight MST on cycles. Let us fix some root v and denote (v, v̄)
as the top ranked terminal pair. The choice of root is irrelevant as
cycles are vertex transitive and similarly if there are two choices for
v̄, they are equivalent under automorphism. First, we assume our
cycle has 4 or more vertices, as C3 is half-integral (i.e., for a certain
choice of root and certain ordering, there exists a half-integral op-
timal solution to (LC-P) on the unweighted MST instance defined
on C3) by the Hamiltonian path solution above.

In cycles, there are two edge-disjoint paths connecting v and v̄,
say P1 and P2. Let E(P1) and E(P2) respectively be the edge sets
of these paths. Since, our cycles have at least 4 vertices, we know
that |P1|, |P2| ≥ 3. Consider the following primal solution: xe = 1

2

for all edges e, xv = 1
2

(on the pair (v, v̄)), xv̄ = 1
2

and xu = 0 for
all other u ∈ R. For any cut (6= U ( V , δ(U) contains at least two
edges e1 and e2 and xe1

+ xe2
= 1 satisfies the constraint (1.3.6).

For U = V , we have the top terminal pair giving us xv + xv̄ = 1,
satisfying the only non-Steiner cut constraint (1.3.7). The cost of

this primal solution is |V |
2

+ d(v, v̄) = |V |
2

+ 1
2

⌊

|V |
2

⌋

.

The corresponding dual solution is given by: y{u} = 1
2

for all

u ∈ V \{v, v̄}, yP1
= yP2

= 1
2
, yV = d(v, v̄) − 1

2
and yU = 0 for

all other U ∈ U . To prove feasibility of this dual solution, let
P1 = 〈v, u1, u2, . . . , uj, v̄〉. For all edges uiui+1, constraint (1.3.2)
is satisfied with equality, as the singleton sets are the only cuts
containing them in their boundary. For edges vu1 and uj v̄, the
edge constraint (1.3.2) is satisfied because the only non-zero cuts
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2.3. CYCLES WITH CHORDS FROM A SINGLE VERTEX

containing them in the boundary are P2 and the singletons {u1}
and {u2} respectively.

Each terminal on vertices in V \{v, v̄} has death time at least
1
2
, and each terminal on these vertices is only responsible for the

singleton set containing it. So all these terminals satisfy constraint
(1.3.3). Since, we are considering cycles of order 4 or greater, both
P1\{v, v̄} and P2\{v, v̄} are non-empty. Let w1 and w2 be highest
ranked terminals in each of the two sets respectively. We know that
d(v, w1), d(v, w2) ≥

1
2
, because all edges are unit weight. Then, the

terminal on v from the pair (v, w2) is responsible for the cut P1

and terminal on v from the pair (v, w1) is responsible for the cut
P2, so both those terminals also satisfy the constraints (1.3.3). The
terminal v (from pair (v, v̄)) and v̄ are responsible for the only non-
Steiner cut V , so the corresponding constraint (1.3.3) is satisfied
with equality. All remaining terminals (all on vertex v) are not
responsible for any cuts with positive value in the dual solution,
proving that this dual is feasible and we can easily see that it has

the same cost |V |
2

+ 1
2

⌊

|V |
2

⌋

≈ 3|V |
4

. We can then conclude with the

following theorem.

2.2.1 Theorem. For any choice of root and ordering, there exists
a half-integral optimal solution to (LC-P) on the unweighted MST
instance defined on a cycle Cn with objective value n

2
+ 1

2

⌊

n
2

⌋

.

2.3 Cycles with Chords from a Single Vertex

We extended our solution of cycles to consider cycles with chords
added from one fixed vertex. More precisely, for some cycle C with
edge set E(C), we consider the graph with the same vertex set V
and edges E(C) ∪ {(v, v′) | v′ ∈ V ′} for some v ∈ V and some
non-empty subset of vertices V ′ ⊆ V \{v} (see Fig. 2.2). First,
we eliminate the easy case where V ′ = V \{v}. If we set v as the
root for the MST, notice that all terminal pairs have death time 1

2
.

Then consider the cycle C and one of the two vertices u adjacent
to v on this cycle, if we set (v, u) to be the top ranked pair, we
have a Hamiltonian path from v to u (E(C)\{vu}) and are done by
the earlier solution. So we assume that there is at least one vertex
(other than v itself) that is not adjacent to v.

17



2. HALF-INTEGRALITY PROPERTIES

Figure 2.2: Cycles with Chords from a Single Vertex

Figure 2.3: Paths P1 and P2

18



2.4. CYCLES WITH TWO CROSSING CHORDS

In this case if there are multiple choices for top ranked terminal
pair, it is irrelevant which one we pick. Let (v, v̄) be the top ranked
pair. As in the previous case, we consider the two edge-disjoint
paths P1 and P2 between v and v̄ along the cycle C. Let xe = 1

2

for all e ∈ E(P1) ∪ E(P2), xv = 1
2

for the pair (v, v̄) and xv̄ = 1
2

and xe, xu = 0 for all other e ∈ E, u ∈ R. The feasibility follows
exactly from the previous case, since the boundary of every Steiner
cut must intersect E(C) twice and xv + xv̄ = 1 for the top ranked
pair, which satisfies the non-Steiner cut V . The cost of the solution

is also |V |
2

+ d(v, v̄).

The dual solution also follows the same structure as before y{u} =
1
2

for all u ∈ V \{v, v̄}, yP1
= yP2

= 1
2

and yV = d(v, v̄). Let
P1 = 〈v, u1, . . . , uj, v̄〉. All edges with both ends in E(P1)\{vu1, uj v̄}
satisfy constraint (1.3.2), because the singletons are the only non-
zero cuts containing them in their boundaries. The only non-zero
cuts containing any edge vui (ui ∈ P1) in their boundaries are P2

and the singleton {ui}, satisfying (1.3.2) and the same holds for the
edge uj v̄. Doing a similar analysis for P2, we see that constraint
(1.3.2) is satisfied for all edges in the graph.

As before, we can see that none of the terminals on V \{v} violate
constraint (1.3.3). And the terminal on v from the pair (v, w2) is
responsible for P1 (where w2 is the top ranked terminal in P2\{v, v̄}),
satisfying (1.3.3), and similarly for P2. The terminal on v from (v, v̄)
and v̄ are only responsible for the non-Steiner cut V (among non-
zero cuts), satisfying the constraint. All other terminals on v are
not responsible for any non-zero cuts, giving us the following result.

2.3.1 Theorem. Let G be a graph that is a cycle with chords that
are all adjacent a fixed vertex. For a given root vertex and order-
ing, there exists a half-integral optimal solution to (LC-P) on the
unweighted MST instance defined on G.

2.4 Cycles with Two Crossing Chords

We were also able to show half-integrality for the MST on cycles
with two crossing chords (as shown in Fig. 2.4) using a similar
solution structure to the previous two cases, but requiring a more
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2. HALF-INTEGRALITY PROPERTIES

Figure 2.4: 2 crossing chords

thoughtful analysis for picking the root vertex and ordering for the
formulation. Consider a cycle C of length k, with two extra edges
(a, c) and (b, d) such that both the paths on C connecting a and b
(excluding a and b) contain exactly one of c and d. As shown in the
figure 2.4, let the path on C between vertices d and a be called Q1;
a and b be Q2; b and c be Q3; c and d be Q4.

Denote the number of edges in Qi as li. Assume WLOG that
l1 ≥ l2, l3, l4 and l2 ≥ l4. For some r ∈ {a, b, c, d} as the root,
we show that there exists a vertex r̄ of maximum distance from r
(c(r, r̄) ≥ c(r, v) for all v ∈ V ) on one of the two paths Qi containing
r. We may assume that the death time d(r̄) ≥ 1, because if d(r̄) =
1
2

for r = a, b, c and d, then it is easy to see that our graph is
necessarily K4, which can be handled by the first case of Hamiltonian
paths. Then we choose (r, r̄) as the highest ranked terminal pair and
construct a solution the same way as the previous two cases.

2.4.1 Lemma. Let G be a cycle with two crossing chords, different
from K4. Then we can always choose a root r ∈ {a, b, c, d} to define
the MST instance for (LC-P) on G, such that there exists a vertex
r̄ of maximum distance from r (c(r, r̄) ≥ c(r, v) for all v ∈ V ) on
one of the two paths Qi containing r.

Proof. We prove the above claim with many cases, by first consid-
ering r = a and in the cases where the statement is not true, we
show that it must be true for a different choice of r (namely, d). So
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2.4. CYCLES WITH TWO CROSSING CHORDS

suppose the statement is not true for r = a, i.e. suppose there is
some terminal on a vertex in Q3∪Q4\{b, d} with death time strictly
greater than the death time of all terminals on vertices in Q1∪Q2\a.
Then let s be a terminal with the maximum death time. Clearly
s 6= c as we assumed that the max death time is at least 1. Now
consider the shortest path S1 from a to s (of length c(a, s)) and con-
sider the neighbor of s that does not lie on this path (s has degree 2,
so this is uniquely defined) and call it s̃. Consider the shortest path
S2 from a to s̃. Define the circuit Ca,s = 〈a, S1, s̃, S2〉 and note that
by definition, the death time of each terminal u (except those on v)
on Ca,s is exactly half the minimum distance along this circuit. We
can think of Ca,s as the shortest circuit that contains a and s.

In addition, we know that |E(S2)| ≤ |E(S1)| ≤ |E(S2)|+1, where
the first inequality holds by the maximality of the death time of s
and the second holds by the minimality of S1. Then, we can get an
expression for c(a, s) as follows:

c(a, s) = |E(S1)| =

⌊

|E(S1)| + |E(S2)| + 1

2

⌋

=

⌊

|E(Cas)|

2

⌋

.

Suppose s ∈ Q4. Notice that if S1 contains the subpath 〈c, . . . , s〉
of Q3, then S2 necessarily contains the subpath 〈s̃, . . . , b〉, and the
same holds if we switch b and c in the above statement. So the
path Q3 must be contained in Ca,s. We can then enumerate all
possibilities for the circuit Ca,s (see figure 2.5):

(i) 〈a, c,Q4, b, Q2〉

(ii) 〈a, c,Q4, Q1〉

(iii) 〈a, c,Q4, b, Q3, a〉

(i) In this case, s ∈ Q3 implies that either S1 or S2 contains Q2.
If S1 contains Q2 then since d(a, s) ≥ d(a, d), we have that l2 + 1 <
|E(S1)| ⇒ l2 ≤ |E(S1)| − 2, and |E(S2)| < l4 + 1 ⇒ |E(S2)| ≤ l4.
But since l4 ≤ l2, we get that |E(S2)| ≤ |E(S1)|−2, a contradiction.
If S2 contains Q2, then the same argument above holds, switching
S1 and S2, yielding |E(S1)| ≤ |E(S2)| − 2, also a contradiction.
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2. HALF-INTEGRALITY PROPERTIES

Figure 2.5: The three possibile circuits (i), (ii), (iii) (from top-left in clockwise
order) for s ∈ Q4
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2.4. CYCLES WITH TWO CROSSING CHORDS

(ii) Similar to the previous case, either S1 or S2 contains Q1. If
S1 contains Q1 then since d(a, s) ≥ d(a, d), we have that l1 + 1 <
|E(S1)| ⇒ l1 ≤ |E(S1)| − 2, and |E(S2)| < l4 + 1 ⇒ |E(S2)| ≤ l4.
And l4 ≤ l1 gives us that |E(S2)| ≤ |E(S1)| − 2, a contradiction as
before. And repeating the argument for the case when S2 contains
Q1, we get another contradiction with |E(S1)| ≤ |E(S2)| − 2.

(iii) In this case, we know that either S1 or S2 contains Q3. It is
easy to verify, by an argument similar to the previous two cases,
that this can happen only if l3 < l4, because if l3 > l4, we would
have s ∈ Q3, and if we had equality then s would necessarily be
either b or d, which we ruled out in this case. So we know that

c(a, s) =

⌊

l3 + l4 + 2

2

⌋

.

Now consider the terminal s′ with maximum death time among all
vertices on Q1\{a}. If s′ = d, then the max distance of any vertex in
Q2\{a} is l2 ≥ l4, a contradiction to the maximality of s. So s′ 6= d
and we analogously construct a circuit Cas′ , the smallest circuit
containing a and s′, which must contain Q1. Since c1 ≥ l2 ≥ l4 > l3,
we can conclude that Cas′ must necessarily be 〈a, c,Q3, d, Q1〉, and

c(a, s′) =

⌊

l1 + l3 + 2

2

⌋

≥

⌊

l3 + l4 + 2

2

⌋

= c(a, s).

Since it must be the case that s′ ∈ Q1, this contradicts d(s) > d(u)
for all u ∈ Q1 ∪ Q2.

Now that we have eliminated the possiblity of s ∈ Q4\{c, d},
consider the case when s ∈ Q3\{c, b} and all vertices on Q1∪Q2\{a}
have a death time strictly smaller than ā. Then, as in the previous
case Cas must contain Q3 and again there are three possibilities for
Cas (as shown in figure 2.6):

(i) 〈a, c,Q3, d, Q1〉

(ii) 〈a, c,Q3, Q2〉

(iii) 〈a, c,Q3, d, Q4, a〉
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Figure 2.6: The three possibile circuits (i), (ii), (iii) (from top-left in clockwise
order) for s ∈ Q3
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2.4. CYCLES WITH TWO CROSSING CHORDS

(i) Similar to the first subcase in the previous case, we know that
either S1 or S2 contains Q1. Suppose it is S1. Then since d(a, s) >
d(a, b), we know that l1 + 1 < |E(S1)| ⇒ l1 ≤ |E(S1)| − 2. Also,
l3 + 1 > |E(S2)| ⇒ |E(S2)| ≤ l3. Which gives us the contradiction
that |E(S2)| ≤ |E(S1)| − 2 (since l3 ≤ l1). In the case S2 contains
Q1, we get the contradiction that |E(S1)| ≤ |E(S2)| − 2.

(ii) In this case, since s ∈ Q3\{b, c}, we can conclude that l3 > l2,
by considering the cases where either S1 or S2 contains Q2, as we
have done before.

Now if we change the root to d, we claim that the vertex that is
furthest away from d lies on Q1. We can compute the terminals with
maximum death time lying on all Qi, call them wi respectively, since
we know the shortest circuit that contains them must necessarily
contain Q4, as l1 ≥ l3 > l2 ≥ l4. Thus, the death times of wi are:

c(d, w1) =

⌊

l1 + l4 + 1

2

⌋

on circuit Cdw1
= 〈d,Q1, c, Q4〉,

c(d, w2) =

⌊

l2 + l4 + 2

2

⌋

on circuit Cdw2
= 〈d, b,Q2, c, Q4〉,

c(d, w3) =

⌊

l3 + l4 + 1

2

⌋

on circuit Cdw3
= 〈d, b,Q3, Q4〉,

w4 = c, c(d, w4) = l4 on circuit Cdw4
= 〈d,Q4, Q4〉.

We can see that c(d, w1) is clearly the largest of the four distances
and thus, clearly w1 has the largest death time among all terminals.
But as w1 ∈ Q1, (d, w1) can be chosen as the top ranked pair to
satisfy the property we want.

(iii) First, we claim that l3 > l4. We know that the shortest path
between a and b along the circuit Ca,s is 〈a, c,Q4, b〉, as otherwise
b would have a greater death time than s. Since this is the strictly
shorter of the two paths from a to b (along Ca,s):

⌊

l4 + 2

2

⌋

<

⌊

l3 + 1

2

⌋

⇒ l4 < l3.
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Next, we use this fact to prove that l3 > l2. Suppose not, i.e.
l2 ≥ l3. Then consider the terminal with the maximum death time
on Q2\{a}. If s′ = b, then clearly

c(a, s′) = l2 ≥

⌊

l3 + l4 + 2

2

⌋

= c(a, s)

since l2 ≥ l3, l4 + 1, contradicting our assumption on s. There-
fore, we may conclude that s′ 6= b and we can construct Ca,s′ , the
minimum circuit containing s′ as before. Since l4 + 1 ≤ l1, l2, l3, one
can easily check that Ca,s′ = a − c − Q4 − b − Q2 and the distance
of s′ from a is then

c(a, s′) =

⌊

l2 + l4 + 2

2

⌋

≥

⌊

l3 + l4 + 2

2

⌋

= c(a, s),

a contradiction to the maximality condition on s. Thus, we have
shown that l3 > l2. But now as in the previous case, we can just
switch the root to d with exactly the same proof.

Now, we use this root r from the above lemma with top ranked
pair (r, r̄) to construct the solution as in the previous two cases.
Let P1 and P2 be the paths on the cycle C between r and r̄. Let
xe = 1

2
, xr = 1

2
(on the pair (r, r̄)) and xr̄ = 1

2
. This solution is

clearly feasible, as we have seen previously.

For the dual, we again consider the same construction: y{u} = 1
2

for all u ∈ V \{r, r̄}, yQ1
= yQ2

= 1
2
, yV = d(r, r̄) and yU = 0 for

all other U ∈ U . Constraints (1.3.2) are satisfied for all edges in
the cycle and constraints (1.3.3) is feasible for all terminals exactly
for the same reasons as before. So we only need to check constraint
(1.3.2) for the edges ac and bd. Due to our choice of (r, r̄ from the
lemma, one of P1 or P2 (say P1 WLOG) contains all {a, b, c, d} and
P2 only contains r. Therefore, the only non-zero cuts containing the
edges ac and bd in the boundary are P2 and the singletons. Note
that if δ(P2) contains one of these edges then only one singleton also
contains it in its boundary, otherwise two singletons contain it. In
either case constraint (1.3.2) is satisfied, concluding the proof and
giving us the following result.
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2.4.2 Theorem. Let G be a cycle with two crossing chords For a
given root vertex and ordering, there exists a half-integral optimal
solution to (LC-P) on the unweighted MST instance defined on G.
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Chapter 3

Computational Study

In this chapter, we describe the techniques and results from a com-
putational study of the performance of the lifted-cut relaxation. We
attempted to find half-integral solutions when possible and report
the integrality gap of (LC-P), as well as the corresponding integral-
ity gap for the undirected-cut formulation (P ), for comparison. We
first describe an equivalent formulation of the LP in terms of net-
work flows, similar to the flow formulations found in [5]. Then we
describle the results obtained by solving the Steinlib ([8]) instances
of Steiner tree problems with this LP using the commercial LP solver
CPLEX ([9]). All the work in this chapter is the original work of
the author.

3.1 Flow Formulation

It is easy to see that the number of constraints in the primal (LC-
P) and the number of variables in the dual (LC-D) are exponential
in the size of the graph, as the number of cuts are exponential in
|V |. We now present an equivalent formulation of this problem as
the union of 4k flow feasibility instances, with the variables xe, xv

as common arc capacities for all the problems. We then minimize
the x variables, with respect to our cost function, while preserving
flow feasibility for each of the instances. Then the max-flow-min-cut
theorem gives us feasibility of x for (LC-P).

We are given a graph G = (V,E), a non-negative edge cost func-
tion c and a set of terminal pairs R (where each vertex has at
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most one terminal on it). We first construct an auxiliary digraph

Ĝ = (V̂ , Ê) (see Fig. 3.1) on which we will define the flow feasibil-
ity problems. Let R = {(s1, t1), ..., (sk, tk)}, with (si, ti) ≺ (sj, tj) iff
i ≤ j. As above, we extend this order to the terminals. First we
add a sink ŝi for each terminal pair (si, ti). Denote the set of sinks

as Ŝ. For each edge pq ∈ E, we replace it by two arcs (p, q) and
(q, p). We then add arcs (si, ŝj) and (ti, ŝj) for each 1 ≤ j ≤ i and
each 1 ≤ i ≤ k (from each terminal to the sinks of all lower ranked

terminals). For notational convinience we partition Ê based on the
three types of edges:

Ê1 = {(p, q), (q, p) | pq ∈ E},

Ê2 = {(si, ŝj), (ti, ŝj) | 1 ≤ j ≤ i, 1 ≤ i ≤ k},

Ê3 = {(si, ti), (ti, si) | ∀(si, ti) ∈ R}.

So,

V̂ = V ∪
k

⋃

i=1

ŝi = V ∪ Ŝ,

Ê = Ê1 ∪ Ê2 ∪ Ê3.

Now, for each terminal v ∈ R, we define two flow feasibility
problems on Ĝ, f v,S and f v,N . If v ∈ {si, ti} for some terminal pair
(si, ti) ∈ R, then let ŝ(v) = ŝi denote the corresponding sink. Let

f v,S
e and f v,N

e be the flow variables denoting the flow on edge e ∈ Ê
for the flow problems f v,S and f v,N respectively. In both problems,
we then want a feasible v − ŝ(v) flow of value 1:

f v,S (δ+(p)) − f v,S (δ−(p)) =







1 p = v
−1 p = ŝ(v)

0 p ∈ V̂ \{v, ŝ(v)}
(3.1.1)

f v,S

(p,q), f
v,S

(q,p) ≤ xpq ∀pq ∈ E (3.1.2)

f v,S

(u,ŝ) ≤







1 u = v̄, ŝ = ŝ(v),
xv u = v, ŝ = ŝ(v),
0 otherwise

∀(u, ŝ) ∈ Ê2 (3.1.3)
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3.1. FLOW FORMULATION

Figure 3.1: Auxiliary digraph G′

f v,S

(u,ū) ≤

{

1 (u, ū) ≻ (v, v̄)
0 otherwise

∀(u, ū) ∈ Ê3 (3.1.4)

0 ≤ f v,S
e ∀e ∈ Ê, (3.1.5)

and

f v,N (δ+(p)) − f v,N (δ−(p)) =







1 p = v
−1 p = ŝ(v)

0 p ∈ V̂ \{v, ŝ(v)}
(3.1.6)

f v,N

(p,q) , f
v,N

(q,p) ≤ xpq ∀pq ∈ E (3.1.7)

f v,N

(u,ŝ) ≤















xv u = v, ŝ = ŝ(v),
xv̄ u = v̄, ŝ = ŝ(v),
1 u ≻ v, u /∈ {v, v̄}, ŝ = ŝ(v)
0 otherwise

∀(u, ŝ) ∈ Ê2

(3.1.8)

f v,N

(u,ū) ≤ 1 ∀(u, ū) ∈ Ê3 (3.1.9)

0 ≤ f v,N
e ∀e ∈ Ê. (3.1.10)

Thus, our flow formulation LP problem (which we will refer to
as LC-F) is given by:
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optLC-F = max
∑

e∈E

c(e)xe +
∑

u∈R

d(v)xu (3.1.11)

subject to (3.1.1) − (3.1.10) ∀v ∈ R

xe, xu ≥ 0 ∀e ∈ E,∀u ∈ V. (3.1.12)

Note that the objective value of this LP (3.1.11) is exactly the
same as that of LC-P (1.3.5).

3.1.1 Equivalence of LC-P and LC-F

We now want to show that the projection of the feasible region
of LC-F onto the variables {xe, xv} is exactly equal to the feasible
region of LC-P. This will imply that the we solve LC-F and project
the optimal solution onto {xe, xv}, we are guaranteed an optimal
solution if LC-P. So, we need to show that some solution (f, x) is
feasible for LC-F if and only if x is feasible for LC-P.

3.1.1 Theorem. A solution x = (xe, xv) of LC-P is feasible (for
LC-P) if and only if there exists a feasible solution (f, x′) of LC-
F such that x′ = x (where x′ is the projection onto the variables
corresponding to x).

Proof. Assume that there exists a feasible solution (f, x′) to LC-
F. We need to show that x′ is feasible for LC-P. Clearly x′ ≥ 0
due to the constraint (3.1.12) on LC-F. To see that x′ satisfies any
constraint of the form (1.3.6) corresponding to U ∈ Sv. Then U is a
v, ŝ(v)-cut on the flow problem f v,S . Since, U is a Steiner cut with
v reponsible, it cannot contain any terminal v ≺ u with (u 6= v),
such that ū /∈ v. Thus, the arc (u, ū) /∈ δĜ(U). Also, since all arcs

of Ê2 ∩ δĜ(U) have capacity 0, except (v, ŝ(v)) and since v̄ /∈ U , the
capacity of U is given by:

capacity of δĜ(U) =
∑

e∈Ê1∩δ
Ĝ

(U)

x′
e + x′

v =
∑

e∈δG(U)

x′
e + x′

v ≥ 1,

(3.1.13)
by max-flow-min-cut, satisfying the constraint.
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3.1. FLOW FORMULATION

Now we look at constraints of the form (1.3.7) corresponding to
cuts U ∈ Nv. Again, U is a v, ŝ(v)-cut in the flow problem f v,N .

Similar to above, δĜ(U)∩ Ê1 contains exactly one arc for each edge
e ∈ E ∩ δG(U) with capacity x′

e. In addition, δĜ(U) contains arc
(v, ŝ(v)) and (v̄, ŝ(v)) with capacities x′

v and x′
v̄. There are no other

arcs in Ê2∩δĜ(U) with non-zero capacity, as U contains no (u, ū) ≻
(v, v̄), because v is assumed to be responsible for U . There can be

no arcs from Ê3 in δĜ(U) as U is a non-Steiner cut by assumption.
Thus,

capacity of δĜ(U) =
∑

e∈Ê1∩δ
Ĝ

(U)

x′
e+x′

v +x′
v̄ =

∑

e∈δG(U)

x′
e+x′

v +x′
v̄ ≥ 1,

(3.1.14)
proving the feasibility of x′ for LC-P.

Now for the other direction, assume we have some x feasible for
LC-P and we need to show that there exist feasible flows f v,S and
f v,N for each v ∈ R, with the values of x acting as the capacities
wherever so defined. Suppose not, i.e. suppose there exists some
v ∈ R, for which one of the flows f v,S or f v,N is infeasible. Then
the max flow is less than 1 and by max-flow-min-cut the minimum
v, ŝ(v)-cut, Û has capacity less than 1. So now we have two cases:

Case: fv,S is infeasible Note first that the condition implies that
U = Û∩V must be a Steiner cut, because it cannot contain v̄, as the
arc (v̄, ŝ(v)) has capacity 1. Also, if U contains some v ≺ u, (u 6= v),
then it must necessarily contain ū also, because the arc (u, ū) has
capacity 1. This implies that U ∈ Sv. Note that the capacity of
δḠ(Û) is equal to the capacity of δḠ(U). This is because the addition

of any vertices of Ŝ\{ŝ(v)} cannot increase or decrease the capacity
of δĜ(U). As in the previous direction, the capcity is given by:

capacity of δĜ(Û) =
∑

e∈Ê1∩δ
Ĝ

(U)

xe + xv =
∑

e∈δG(U)

xe + xv ≥ 1,

(3.1.15)
by the feasibility of x, a contradiction.
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Case: fv,N is infeasible This time note that the condition implies
that U = Û∩V must be a non-Steiner cut, because for each terminal
u, the arc (u, s̄(u)) has capacity 1, and we know the Û has capacity

strictly less than 1. Now notice that if Û contains some terminal
u ≻ v, then δĜ(Û) contains the arc (u, ŝ(v)) which has capacity
1, a contradiction. As in the previous case note that the capacity
of δḠ(Û) is equal to the capacity of δḠ(U) because the addition of

any vertices of Ŝ\{ŝ(v)} cannot increase or decrease the capacity of
δĜ(U).

Therefore, we must conclude that v is responsible for U and as
above, the capacity is given by:

capacity of δĜ(Û) =
∑

e∈Ê1∩δ
Ĝ

(U)

x′
e+x′

v +x′
v̄ =

∑

e∈δG(U)

x′
e+x′

v +x′
v̄ ≥ 1,

(3.1.16)
by the feasibility of x, a contradiction, proving the equivalence

of the two forms.

3.2 Computational Results

3.2.1 Techniques

We implemented the construction of the digraph and the (LC-
F) formulation in C++ using the LEDA [11] libraries, which we
then solved using CPLEX [9]. Solving for (LC-F), instead of (LC-
P) directly meant that we were guaranteed to find optimal, but
not necessarily basic solutions to (LC-P). However, a separation
oracle for the (LC-P) problem would be essentially equivalent to
(LC-F) and while the above flow formulation is polynomial in size
of the graph, we add O(k2) edges to the auxiliary graph and define
O(k) flow instances on that. So especially for larger values of k
(particularly, in minimum spanning tree instances, where k = n−1),
(LC-F) alone is a large LP.

In addition, the question we were interested in the existence of a
half-integral solution. Note that the existence of a non-half-integral
extreme point in the (LC-P) polytope does not necessarily imply
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3.2. COMPUTATIONAL RESULTS

that there exists a cost function c for which it is the unique min-
imum. This is because, the vector c alone does not define the ob-
jective value of (LC-P). The death times d(v) are completely deter-
mined by c and the graph G and cannot be set arbitrarily by us.
In addition changing c could change the ordering of the terminal
pairs and therefore the entire polytope. However, non-half-integral
extreme points do suggest problems in designing purely LP round-
ing based approximation algorithms. Since testing all possible half-
integral solutions and checking if they are feasible and optimal was
computationally infeasible, if we found a non-half-integral extreme
point, we terminated and moved on to the next choice of root ver-
tex. We used the following simple rounding algorithm to look for a
half-integral solution, or to verify the existence of a non-half-integral
extreme point.

Given an optimal solution x to (LC-F). Repeat while x is not
half-integral. If ∃xe (or xv) s.t. xe < 0.5(xv < 0.5), then add
constraint xe = 0(xv = 0) and resolve LP. Else, if ∃xe or xv s.t.
xe > 0.5(xv > 0.5), then add constraint xe = 1(xv = 1) and resolve
LP. If the objective value increases after the addition of one of these
constraints, we know that (LC-P) must have a non-half-integral ex-
treme point.

If the original x were a convex combination of half-integral points
x1, . . . , xp, then xe < 0.5 (or xv < 0.5) implies that at least one of
x1, . . . , xp must have xi

e = 0 (or xi
v = 0). Similarly, xe > 0.5 (or

xv > 0.5) implies that at least one of x1, . . . , xp must have xi
e = 1

(or xi
v = 1). Thus, repeating this process will eventually lead to

a half-integral optimal solution, or adding one of these constraints
will increase the cost of the optimal solution, implying that x was
not a convex combination of half-integral extreme points.

We repeated this procedure for all choices of roots, as we con-
sidered only Steiner tree and spanning tree instances, until a half-
integral solution was found. If one was not found, we enumerated
all possible ties in the ordering of terminal pairs for each choice of
root and solved for alternate orderings.
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3. COMPUTATIONAL STUDY

3.2.2 The Test Sets

First, we solved unit weight minimum spanning tree instances on
all graphs of order 8 and less. We enumerated these graphs, using
the geng utility from the nauty package by McKay [10]. We were
able to find half-integral solutions for all graphs under some root
and some ordering.

We then ran instances from the Steinlib ([8]) test sets for Steiner
Tree instances. We also implemented the flow formulation for the
undirected cut relaxation (from [5]) in C++ using LEDA libraries
and solved the same Steinlib instances using this, to compare the
performance of the two relaxations in terms of integrality gap. In
the tables in the following section, we list the size of the underlying
graph, as well as the number of terminal pairs in the instance, along
with the objective value of the half-integral optimal solution found
and the IP/LP gap (the costs of the optimal Steiner trees were given
in all instances). We also give the optimal for the undirected cut
relaxation, and its IP/LP gap for the sake of comparison.

An interesting result of the computational study was that when-
ever we did not find an optimal half-integral solution, we always
managed to find an optimal quarter-integral solution. We indicate
such instances with “None Found” in the optimal half-intergral ob-
jective column of the tables and then separately list the computa-
tional results for quarter-integral optimal solutions in these instances
in Table 3.18.

Some instances in some of the test sets were too large and the con-
verge in CPLEX was too slow and were thus abandoned. Therefore,
we do not list all the test sets or may not list the results for some
problem in some of the sets. In total, we were unable to compute
results for 30 out of 264 instances in the test sets we considered.
In addition, we did not consider 24 test sets with 811 additional
instances, including many instances where the cost of the optimal
Steiner tree was not known.
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3.2. COMPUTATIONAL RESULTS

3.2.3 Results

We present the results that we computed for the following Stein-
lib test sets. The following tables are arranged by the following
columns:

• Instance - name of the test instance

• |V | - number of vertices in the underlying graph

• |E| - number of edges in the underlying graph

• |R| - number of terminals (not pairs, but individual terminal
vertices)

• 1/2-int. Obj. - (LC-P) objective value of the first optimal half-
integral solution found (we refer to this value as opt∗LC−P ) as we
iterated through all possible choices of roots and orderings. If
we could not find an optimal half-integral solution for any root
or ordering through our rounding procedure, we write ‘None
Found’

• Optimal - cost of the optimal Steiner tree, optR

• Gap - IP/LP gap for the solution reported in 1/2-int. Obj.,
i.e., optR/opt∗LC−P

• Undir. Obj. - optimal objective value for the undirected-cut
relaxation, optP

• (P) Gap - IP/LP gap for the optimal undirected cut solution,
i.e., optR/optP

• Improvement - percentage improvement of the LP/IP gap of
(LC-P) over (P), i.e.,

opt∗LC−P − optP
optR

∗ 100

In Table 3.18, where we list the instances where we were not able
to find optimal half-integral solutions, the column 1/4-int. Obj.
lists the (LC-P) objective value of the first optimal quarter-integral
solution found and the columns Gap and Improvement are defined
appropriately.
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES10FST01 18 20 18 21315435 22920745 1.08 17352482 1.32 17.29%
ES10FST02 14 13 18 19134104 19134104 1.00 19134104 1.00 0.00%
ES10FST03 17 20 18 23253661 26003678 1.12 21273648 1.22 7.61%
ES10FST04 18 20 18 19469126 20461116 1.05 19350821 1.06 0.58%
ES10FST05 12 11 18 18818916 18818916 1.00 18818916 1.00 0.00%
ES10FST06 17 20 18 24467461 26540768 1.08 20131434 1.32 16.34%
ES10FST07 14 13 18 26025072 26025072 1.00 26025072 1.00 0.00%
ES10FST08 21 28 18 22124912 25056214 1.13 18402047 1.36 14.86%
ES10FST09 21 29 18 19203779 22062355 1.15 16668809 1.32 11.49%
ES10FST10 18 21 18 23769658 23936095 1.01 22944932 1.04 3.45%
ES10FST11 14 13 18 22239535 22239535 1.00 22239535 1.00 0.00%
ES10FST12 13 12 18 19626318 19626318 1.00 19626318 1.00 0.00%
ES10FST13 18 21 18 19483914 19483914 1.00 16525930 1.18 15.18%
ES10FST14 24 32 18 21046882 21856128 1.04 18546733 1.18 11.44%
ES10FST15 16 18 18 18296778 18641924 1.02 15659093 1.19 14.15%

Table 3.1: Test set ES10FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES20FST01 29 28 38 33703886 33703886 1.00 33703886 1.00 0.00%
ES20FST02 29 28 38 32639486 32639486 1.00 32639486 1.00 0.00%
ES20FST03 27 26 38 27847417 27847417 1.00 27847417 1.00 0.00%
ES20FST04 57 83 38 23169798 27624394 1.19 20593828 1.34 9.32%
ES20FST05 54 77 38 28125710 34033163 1.21 23476575 1.45 13.66%
ES20FST06 29 28 38 36014241 36014241 1.00 36014241 1.00 0.00%
ES20FST07 45 59 38 27619945 34934874 1.26 24008408 1.46 10.34%
ES20FST08 52 74 38 30882544.5 38016346 1.23 26062921 1.46 12.68%
ES20FST09 36 42 38 32950420.5 36739939 1.12 26689958 1.38 17.04%
ES20FST10 49 67 38 29339650.5 34024740 1.16 23993266 1.42 15.71%
ES20FST11 33 36 38 26905801 27123908 1.01 25714785 1.05 4.39%
ES20FST12 33 36 38 25803445.5 30451397 1.18 21096971 1.44 15.46%
ES20FST13 35 40 38 34063688 34438673 1.01 32495741 1.06 4.55%
ES20FST14 36 44 38 29318085 34062374 1.16 25603540 1.33 10.91%
ES20FST15 37 43 38 31503334 32303746 1.03 30467282 1.06 3.21%

Table 3.2: Test set ES20FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES30FST01 79 115 58 33711897 40692993 1.21 30011047 1.36 9.09%
ES30FST02 71 97 58 33223279 40900061 1.23 31105804 1.31 5.18%
ES30FST03 83 120 58 37155773 43120444 1.16 33866900 1.27 7.63%
ES30FST04 80 115 58 35018704.5 42150958 1.20 29015574 1.45 14.24%
ES30FST05 58 71 58 34926884 41739748 1.20 29605537 1.41 12.75%
ES30FST06 83 119 58 29843261 39955139 1.34 27249251 1.47 6.49%
ES30FST07 53 64 58 37173375 43761391 1.18 32572973 1.34 10.51%
ES30FST08 69 93 58 34706656 41691217 1.20 30346305 1.37 10.46%
ES30FST09 43 44 58 31797611 37133658 1.17 25516919 1.46 16.91%
ES30FST10 48 52 58 41816723 42686610 1.02 40090641 1.06 4.04%
ES30FST11 79 112 58 33871930 41647993 1.23 30537220.5 1.36 8.01%
ES30FST12 46 48 58 36383266 38416720 1.06 35635052 1.08 1.95%
ES30FST13 65 84 58 33873481 37406646 1.10 28149408 1.33 15.30%
ES30FST14 53 58 58 42755314 42897025 1.00 42623312 1.01 0.31%
ES30FST15 118 188 58 32821263 43035576 1.31 29599985 1.45 7.49%

Table 3.3: Test set ES30FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES40FST01 93 127 78 35216632 44841522 1.27 32418137 1.38 6.24%
ES40FST02 82 105 78 38965960 46811310 1.20 34266438 1.37 10.04%
ES40FST03 87 116 78 38238180 49974157 1.31 34328323.5 1.46 7.82%
ES40FST04 55 55 78 44637601 45289864 1.01 43545704 1.04 2.41%
ES40FST05 121 180 78 40833022.5 51940413 1.27 34663163 1.50 11.88%
ES40FST06 92 123 78 43011514.5 49753385 1.16 38314195 1.30 9.44%
ES40FST07 77 95 78 41718596 45639009 1.09 40870065 1.12 1.86%
ES40FST08 98 137 78 38775163 48745996 1.26 34052834 1.43 9.69%
ES40FST09 107 153 78 40647678 51761789 1.27 34323578 1.51 12.22%
ES40FST10 107 152 78 44332256 57136852 1.29 37656718.5 1.52 11.68%
ES40FST11 97 135 78 36428572 46734214 1.28 31104432.5 1.50 11.39%
ES40FST12 67 75 78 40222166 43843378 1.09 38645053 1.13 3.60%
ES40FST13 78 95 78 49118268 51884545 1.06 45363399 1.14 7.24%
ES40FST14 98 134 78 39311275.5 49166952 1.25 34762114.5 1.41 9.25%
ES40FST15 93 129 78 44695923 50828067 1.14 39963737.5 1.27 9.31%

Table 3.4: Test set ES40FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES50FST01 118 160 98 46039276.5 54948660 1.19 37379635 1.47 15.76%
ES50FST02 125 177 98 42496774 55484245 1.31 36116073 1.54 11.50%
ES50FST03 128 182 98 43565984.5 54691035 1.26 39137766.5 1.40 8.10%
ES50FST04 106 138 98 45535736 51535766 1.13 41304397 1.25 8.21%
ES50FST05 104 135 98 46843447.5 55186015 1.18 43529567.5 1.27 6.00%
ES50FST06 126 182 98 42946564.5 55804287 1.30 38643804.5 1.44 7.71%
ES50FST07 143 211 98 39598577.5 49961178 1.26 35576869.5 1.40 8.05%
ES50FST08 83 96 98 50243920 53754708 1.07 50045608 1.07 0.37%
ES50FST09 139 202 98 42823306 53456773 1.25 39189756 1.36 6.80%
ES50FST10 139 207 98 41479316.5 54037963 1.30 38222693 1.41 6.03%
ES50FST11 100 131 98 44988757 52532923 1.17 38784567.5 1.35 11.81%
ES50FST12 110 149 98 None Found 53409291 N/A 35224299.5 1.52 N/A
ES50FST13 92 116 98 42324481 53891019 1.27 39857486 1.35 4.58%
ES50FST14 120 167 98 42033840.5 53551419 1.27 38227440 1.40 7.11%
ES50FST15 112 147 98 45532297 52180862 1.15 40649933.5 1.28 9.36%

Table 3.5: Test set ES50FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES60FST01 123 159 118 43632205 53761423 1.23 37486867 1.43 11.43%
ES60FST02 186 280 118 44283979.5 55367804 1.25 40852138.5 1.36 6.20%
ES60FST03 113 142 118 49416145.5 56566797 1.14 43274591 1.31 10.86%
ES60FST04 162 238 118 42875066.5 55371042 1.29 39191853.5 1.41 6.65%
ES60FST05 119 148 118 43100064 54704991 1.27 38391545.5 1.42 8.61%
ES60FST06 130 174 118 49520323 60421961 1.22 46487328.5 1.30 5.02%
ES60FST07 188 280 118 46457940 58978041 1.27 44471211.5 1.33 3.37%
ES60FST08 109 133 118 46621481 58138178 1.25 41581728.5 1.40 8.67%
ES60FST09 151 216 118 43799411 55877112 1.28 40948619 1.36 5.10%
ES60FST10 133 177 118 47550901.5 57624488 1.21 43002107 1.34 7.89%
ES60FST11 121 154 118 47110672.5 56141666 1.19 42799453 1.31 7.68%
ES60FST12 176 257 118 49590635.5 59791362 1.21 44521172 1.34 8.48%
ES60FST13 157 226 118 46073332.5 61213533 1.33 39552251 1.55 10.65%
ES60FST14 118 149 118 49330757.5 56035528 1.14 48640013 1.15 1.23%
ES60FST15 117 151 118 44321722.5 56622581 1.28 41634001 1.36 4.75%

Table 3.6: Test set ES60FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES70FST01 154 209 138 53823779 62058863 1.15 48717090 1.27 8.23%
ES70FST02 147 197 138 46966479.5 60928488 1.30 38978895 1.56 13.11%
ES70FST03 181 264 138 50633555 61934664 1.22 44082704 1.40 10.58%
ES70FST04 167 231 138 56011177.5 62938583 1.12 51366338 1.23 7.38%
ES70FST05 169 231 138 47944585.5 62256993 1.30 42738019 1.46 8.36%
ES70FST06 187 268 138 52238427 62124528 1.19 47255253 1.31 8.02%
ES70FST07 167 230 138 54849021.5 62223666 1.13 48677762.5 1.28 9.92%
ES70FST08 209 314 138 47811096.5 61872849 1.29 40054055.5 1.54 12.54%
ES70FST09 161 220 138 49636636.5 62986133 1.27 43367517 1.45 9.95%
ES70FST10 165 225 138 48244618.5 62511830 1.30 40977007 1.53 11.63%
ES70FST11 177 254 138 51587833 66455760 1.29 44565358.5 1.49 10.57%
ES70FST12 142 181 138 56234038.5 63047132 1.12 51242369.5 1.23 7.92%
ES70FST13 160 219 138 51968348.5 62912258 1.21 46190036.5 1.36 9.18%
ES70FST14 143 184 138 50360234 60411124 1.20 43016353 1.40 12.16%
ES70FST15 178 251 138 50893375 62318458 1.22 44685849.5 1.39 9.96%

Table 3.7: Test set ES70FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES80FST01 187 255 158 58206511 70927442 1.22 49701775 1.43 11.99%
ES80FST02 183 249 158 None Found 65273810 N/A 45239625 1.44 N/A
ES80FST03 189 261 158 50243139.5 65332546 1.30 48640519.5 1.34 2.45%
ES80FST04 198 280 158 49563927 64193446 1.30 46027375 1.39 5.51%
ES80FST05 172 228 158 54834413 66350529 1.21 46797698 1.42 12.11%
ES80FST06 172 224 158 55495024.5 71007444 1.28 49089523.5 1.45 9.02%
ES80FST07 193 271 158 51404973 68228475 1.33 47285182.5 1.44 6.04%
ES80FST08 217 306 158 51466172 67452377 1.31 47588990 1.42 5.75%
ES80FST09 236 343 158 54541631 69825651 1.28 46878391 1.49 10.97%
ES80FST10 156 197 158 54566863.5 65497988 1.20 47455325 1.38 10.86%
ES80FST11 209 295 158 51621068.5 66283099 1.28 45536836.5 1.46 9.18%
ES80FST12 147 180 158 50748856 65070089 1.28 48893327.5 1.33 2.85%
ES80FST13 164 211 158 53269818 68022647 1.28 50576264 1.34 3.96%
ES80FST14 209 297 158 None Found 70077902 N/A 48800427 1.44 N/A
ES80FST15 197 282 158 55759909 69939071 1.25 50461722.25 1.39 7.58%

Table 3.8: Test set ES80FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES90FST01 181 231 178 63678693 68350357 1.07 63100249 1.08 0.85%
ES90FST02 221 313 178 53847761 71294845 1.32 48037843 1.48 8.15%
ES90FST03 284 430 178 54419752.5 74817473 1.37 48281159 1.55 8.20%
ES90FST04 217 299 178 52837842.5 70910063 1.34 46878168 1.51 8.40%
ES90FST05 190 254 178 None Found 71831224 N/A 53579279.5 1.34 N/A
ES90FST06 215 290 178 58881560 68640346 1.17 56175003.5 1.22 3.94%
ES90FST07 175 221 178 57439950.5 72036885 1.25 52451282 1.37 6.93%
ES90FST08 234 332 178 None Found 72341668 N/A 47156067.5 1.53 N/A
ES90FST09 234 331 178 51664636.5 67856007 1.31 44420114.5 1.53 10.68%
ES90FST10 246 356 178 55523451.5 72310409 1.30 50383627.2 1.44 7.11%
ES90FST11 225 323 178 53855825 72310039 1.34 47936750.5 1.51 8.19%
ES90FST12 207 284 178 49215790 69367257 1.41 47065932 1.47 3.10%
ES90FST13 240 349 178 53012657.5 72810663 1.37 47710865.75 1.53 7.28%
ES90FST14 185 243 178 56034321 69188992 1.23 52214018.5 1.33 5.52%
ES90FST15 207 286 178 55066661.5 71778294 1.30 48352119 1.48 9.35%

Table 3.9: Test set ES90FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES100FST01 250 354 198 52055234.5 72522165 1.39 47036581.5 1.54 6.92%
ES100FST02 339 522 198 None Found 75176630 N/A 51318478.5 1.46 N/A
ES100FST03 189 233 198 59086166 72746006 1.23 53398490.5 1.36 7.82%
ES100FST04 188 235 198 61560110 74342392 1.21 56913866 1.31 6.25%
ES100FST05 188 238 198 67349573.5 75670198 1.12 63747077 1.19 4.76%
ES100FST06 301 452 198 54793391 74414990 1.36 49844261 1.49 6.65%
ES100FST07 276 401 198 57259103.5 77740576 1.36 55248165 1.41 2.59%
ES100FST08 210 276 198 57450211.5 73033178 1.27 49429636.5 1.48 10.98%
ES100FST09 248 342 198 None Found 77952027 N/A 55263427.5 1.41 N/A
ES100FST10 229 312 198 59071191 75952202 1.29 51494351.5 1.47 9.98%
ES100FST11 253 362 198 61602444 78674859 1.28 56071849.5 1.40 7.03%
ES100FST12 266 385 198 58856798 76131099 1.29 52548592 1.45 8.29%
ES100FST13 254 361 198 None Found 74604990 N/A 53491107 1.39 N/A
ES100FST14 198 253 198 63732138.5 78632795 1.23 56248728 1.40 9.52%
ES100FST15 231 319 198 54255776 70446493 1.30 46804585 1.51 10.58%

Table 3.10: Test set ES100FST
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
MSM0580 338 541 20 390 467 1.20 337 1.39 11.35%
MSM0654 1290 2270 18 769 823 1.07 756 1.09 1.58%
MSM0709 1442 2403 30 801 884 1.10 721 1.23 9.05%
MSM0920 752 1264 50 686 806 1.17 594 1.36 11.41%
MSM1008 402 695 20 454 494 1.09 384 1.29 14.17%
MSM1234 933 1632 24 537 550 1.02 508.5 1.08 5.18%
MSM1477 1199 2078 60 854 1068 1.25 786 1.36 6.37%
MSM1707 278 478 20 554 564 1.02 534 1.06 3.55%
MSM1844 90 135 18 168 188 1.12 145 1.30 12.23%
MSM1931 875 1522 18 571 604 1.06 545 1.11 4.30%
MSM2000 898 1562 18 527 594 1.13 527 1.13 0.00%
MSM2326 418 723 26 378 399 1.06 312 1.28 16.54%
MSM3676 957 1554 18 569 607 1.07 530 1.15 6.43%
MSM4038 237 390 20 316 353 1.12 290 1.22 7.37%
MSM4114 402 690 30 373 393 1.05 343 1.15 7.63%
MSM4190 391 666 30 341 381 1.12 321 1.19 5.25%
MSM4224 191 302 20 276 311 1.13 250 1.24 8.36%
MSM4414 317 476 20 362 408 1.13 347 1.18 3.68%
MSM4515 777 1358 24 555 630 1.14 458 1.38 15.40%

Table 3.11: Test set MSM
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
P455 100 4950 8 989.5 1138 1.15 872.5 1.30 10.28%
P456 100 4950 8 1058 1228 1.16 932 1.32 10.26%
P457 100 4950 18 1293 1609 1.24 1113.5 1.44 11.16%
P458 100 4950 18 1448.5 1868 1.29 1256.5 1.49 10.28%
P459 100 4950 38 1785 2345 1.31 1543.5 1.52 10.30%
P460 100 4950 38 2049 2959 1.44 1783.5 1.66 8.97%

Table 3.12: Test set P4E

Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
P601 100 180 8 7181 8083 1.13 6444 1.25 9.12%
P602 100 180 8 4600.5 5022 1.09 4233.5 1.19 7.31%
P603 100 180 18 10517.5 11397 1.08 9164 1.24 11.88%
P604 100 180 18 10355 10355 1.00 9083 1.14 12.28%
P605 100 180 18 12518.5 13048 1.04 11251 1.16 9.71%
P606 100 180 38 12558 15358 1.22 10882.5 1.41 10.91%
P607 100 180 38 12293.5 14439 1.17 10868.5 1.33 9.87%
P608 100 180 38 13889 18263 1.31 11757 1.55 11.67%
P609 100 180 98 22951.5 30161 1.31 20465.25 1.47 8.24%
P610 100 180 98 20264 26903 1.33 17841.5 1.51 9.00%
P611 100 180 98 22344 30258 1.35 20344 1.49 6.61%
P612 200 370 18 14320 18429 1.29 13805.5 1.33 2.79%
P613 200 370 38 22721.5 27276 1.20 20735 1.32 7.28%
P614 200 370 78 31499.5 42474 1.35 28052.75 1.51 8.11%
P615 200 370 198 None Found 62263 N/A 40615.0625 1.53 N/A

Table 3.13: Test set P6Z
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
P619 100 180 8 7378 7485 1.01 7378 1.01 0.00%
P620 100 180 8 8746 8746 1.00 7015 1.25 19.79%
P621 100 180 8 8346 8688 1.04 8346 1.04 0.00%
P622 100 180 18 14814 15972 1.08 12941 1.23 11.73%
P623 100 180 18 17016 19496 1.15 16059 1.21 4.91%
P624 100 180 38 16845 20246 1.20 13751 1.47 15.28%
P625 100 180 38 19208.5 23078 1.20 14616 1.58 19.90%
P626 100 180 38 18099.5 22346 1.23 15508 1.44 11.60%
P627 100 180 98 28477 40647 1.43 23982.5 1.69 11.06%
P628 100 180 98 29287 40008 1.37 24237 1.65 12.62%
P629 100 180 98 29798 43287 1.45 25259 1.71 10.49%
P630 200 370 18 25316 26125 1.03 20148 1.30 19.78%
P631 200 370 38 33936 39067 1.15 26510 1.47 19.01%
P632 200 370 78 44665 56217 1.26 37202 1.51 13.28%
P633 200 370 198 None Found 86268 N/A 52174 1.65 N/A

Table 3.14: Test set P6E

Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
Berlin52 52 1326 30 805 1044 1.30 684.5 1.53 11.54%
Brasil58 58 1653 48 11421 13655 1.20 10099 1.35 9.68%

Table 3.15: Test set X
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
B01 50 63 16 75.5 82 1.09 72 1.14 4.27%
B02 50 63 24 75.5 83 1.10 72.5 1.14 3.61%
B03 50 63 48 127 138 1.09 124.5 1.11 1.81%
B04 50 100 16 52 59 1.13 49.5 1.19 4.24%
B05 50 100 24 52 61 1.17 49.5 1.23 4.10%
B06 50 100 48 95 122 1.28 89 1.37 4.92%
B07 75 94 24 99 111 1.12 96.5 1.15 2.25%
B08 75 94 36 95 104 1.09 82.5 1.26 12.02%
B09 75 94 74 196.5 220 1.12 194.5 1.13 0.91%
B10 75 150 24 77 86 1.12 71.5 1.20 6.40%
B11 75 150 36 72.5 88 1.21 70 1.26 2.84%
B12 75 150 74 131 174 1.33 128 1.36 1.72%
B13 100 125 32 142 165 1.16 137 1.20 3.03%
B14 100 125 48 199 235 1.18 198 1.19 0.43%
B15 100 125 98 264.5 318 1.20 249.25 1.28 4.80%
B16 100 200 32 106 127 1.20 103.5 1.23 1.97%
B17 100 200 48 108 131 1.21 102.5 1.28 4.20%
B18 100 200 98 170.5 218 1.28 167.5 1.30 1.38%

Table 3.16: Test set B
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Instance |V | |E| |R| 1/2-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
C01 500 625 8 74.5 85 1.14 71 1.20 4.12%
C02 500 625 18 113 144 1.27 108.5 1.33 3.13%
C03 500 625 164 598.5 754 1.26 579.5 1.30 2.52%
C04 500 625 248 864.5 1079 1.25 854.75 1.26 0.90%
C05 500 625 498 1285 1579 1.23 1270.5 1.24 0.92%
C06 500 1000 8 47 55 1.17 45.5 1.21 2.73%
C07 500 1000 18 83.5 102 1.22 83 1.23 0.49%
C08 500 1000 164 387.5 509 1.31 379.25 1.34 1.62%
C09 500 1000 248 516 707 1.37 507 1.39 1.27%

Table 3.17: Test set C

Instance |V | |E| |R| 1/4-int. Obj. Optimal Gap Undir. Obj. (P ) Gap Improvement
ES50FST12 110 149 98 43476772 53409291 1.23 35224299.5 1.52 15.45%
ES80FST02 183 249 158 51174464 65273810 1.28 45239625 1.44 9.09%
ES80FST14 209 297 158 55069706.5 70077902 1.27 48800427 1.44 8.95%
ES90FST05 190 254 178 53579279.5 71831224 1.34 58221148.5 1.23 6.46%
ES90FST08 234 332 178 47156067.5 72341668 1.53 55722313 1.30 11.84%
ES100FST02 339 522 198 57727090.5 75176630 1.30 51318478.5 1.46 8.53%
ES100FST09 248 342 198 60272648.5 77952027 1.29 55263427.5 1.41 6.43%
ES100FST13 254 361 198 57726076 74604990 1.29 53491107 1.39 5.68%
P633 200 370 198 61978.5 86268 1.39 52174 1.65 11.37%
P615 200 370 198 44292.25 62263 1.41 40615.0625 1.53 5.91%

Table 3.18: Quarter-Integral Optimal Solutions
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Chapter 4

Conclusions and Further

Directions

In this report we looked at the lifted-cut linear programming re-
laxation for the Steiner forest problems and its performance, partic-
ularly with regard to the existence of half-integral optimal solutions.
We constructed some classes of graphs on which the unweighted min-
imum spanning tree instance has a half-integral optimal solution for
a given choice of root and ordering of the terminal pairs. It is an
interesting question to identify instances of the problem where we
are guaranteed half-integral optimal solutions, even if we restrict
ourselves to the simple case unweighted minimum spanning tree in-
stances.

We then solved the LP for test instances from the Steinlib suite
using a compact flow formulation. The unweighted minimum span-
ning tree instances on all connected graphs of order at most 8 had
half-integral optimal solutions. Out of 234 Steiner tree instances we
successfully solved on larger graphs, we were unable to find half-
integral optimal solutions for only 10, and in doing so we verified
(computationally) that for every possible choice of root and ordering
on these instances, there exists at least one non-half-integral extreme
point of the polytope. In addition, comparing the IP/LP gap with
that of the undirected-cut relaxation suggests that the lifted-cut re-
laxation has a consistent significant improvement in the objective
value.
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primal-dual to cost shares and back: A stronger LP relaxation
for the Steiner forest problem, In Proceedings of the 32nd In-
ternational Colloquium on Automata, Languages and Program-
ming (ICALP), 2005.

[4] M. Goemans, The Steiner Tree Polytope and Related Polyhedra,
Mathematical Programming, 63 (1994), pp. 157-182.

[5] M. Goemans, Y. Myung, A Catalog of Steiner Tree Formula-
tions, Networks, 23 (1992), pp. 19-28.

[6] K. Jain, V. Vazirani, Applications of Approximation Algorithms
to Cooperative Games, In Proceedings of the Thirty-Third An-
nual ACM Symposium on Theory of Computing (STOC), ACM
Press, 2001, pp. 364-372.

[7] V. Vazirani, Approximation Algorithms, Springer, 2001, New
York.

[8] T. Koch, A. Martin, and S. Voss, SteinLib: An Updated Library
on Steiner Tree Problems in Graphs, 2000. Online document at
http://elib.zib.de/steinlib, last visited on July 10, 2007.

55



BIBLIOGRAPHY

[9] ILOG CPLEX, http://www.ilog.com/products/cplex/.

[10] B. McKay, nauty User’s Guide (Version 2.2), Computer Science
Department, Australian National University, 2004.
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