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Abstract

In this essay we propose a risk protection approach for minimizing a nonlinear uncon-
strained problem with uncertain parameters. By minimizing the average of second order
approximations of the original objective function at p sample values of the parameters, we
avoid unsatisfactory results due to unfortunate specification of the unknown parameters.
We demonstrate that the computational cost of the risk protection approach is acceptable:
we give both a theoretical analysis and provide results of computational experiments. In
order to obtain accurate derivatives and reduce the computational cost in minimization, the
reverse mode of automatic differentiation in ADMAT 2.0 is adopted to calculate gradients
and Hessians. We also use ADMAT 2.0 to investigate some interesting sensitivity applica-
tions in computational finance such as “the Greeks”, project and real option evaluation,
and CVaR minimization.
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Chapter 1

Introduction

In this essay we investigate unconstrained nonlinear optimization with uncertain parame-
ters. Because the parameters are unknown, arbitrary or random settings of the parameters
could lead to very undesirable results. To overcome this problem, we propose a risk pro-
tection approach.

Mathematically, let f(x, µ) be a scalar-valued function of n independent variables x
and m parameters µ. In general, assume n is much greater than m. Assume that the
dependence of f on x and µ is twice continuously differentiable.

Suppose µ is a random variable with a continuous distribution. Let µ1, · · · , µp be p
sample values of µ chosen randomly from its distribution. Then the expected value of f
at x, E(fµ(x)), can be approximated by the average of function value at different sample
values of µ

g(x) ≡ 1

p

p∑
i=1

f(x, µi) (1.1)

Minimizing g with respect to x is an approach to finding the minimizer of the expected
value function of f . Gradients are needed in many algorithms for nonlinear programming.
To minimize g, we have to evaluate the gradient of f(x, µ) at each µi, i = 1, · · · , p. However,
p can be fairly large to ensure a good approximation to the expected value; thus, the cost
to minimize g can be expensive.

The risk protection approach uses second order approximation of f(x, µ) at µ̄, where µ̄ is
the mean of the sample values µ1, · · · , µp, and then takes the average of the approximation
values at different sample values of µ. Define

f̃(x, µi) ≡ f̃i(x) = f(x, µ̄) +∇µf(x, µ̄)T (µi − µ̄) +
1

2
(µi − µ̄)T∇2

µf(x, µ̄)(µi − µ̄) (1.2)
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and

g̃(x) ≡ 1

p

p∑
i=1

f̃i(x) (1.3)

To evaluate g̃(x), we only need to evaluate f(x, µ̄), ∇µf(x, µ̄) and ∇2
µf(x, µ̄) once and

the rest of work consists of matrix multiplications. In the next section, we will analyse the
cost of evaluating the function values, gradients, and Hessian of g(x) and g̃(x) carefully.
We will show that evaluating the function value, gradients, and Hessians of g̃(x), compared
to g(x), is less costly.

To compute exact values of derivatives and solve the minimization problems with ac-
ceptable computational cost, the automatic differentiation technique is used in this essay
to calculate gradients and Hessians. More specifically, ADMAT 2.0—an Automatic Dif-
ferentiation Toolbox for MATLAB developed by Dr. Coleman and Dr. Xu [4, 5, 7] is
used. It is based on previous work by Dr. Coleman and Dr. Verma [3]. Both forward
and reverse mode of automatic differentiation are included in ADMAT 2.0. The reverse
mode of automatic differentiation is used to compute the gradient in the following analysis
and experiment because the forward mode is more expensive. Not surprisingly, the reverse
mode uses more memory because all the intermediate variables are saved. The automatic
differentiation technique, forward mode and reverse mode, will be introduced in Appendix.

One reason that we are interested in this risk protection approach is that there are many
sensitivity problems in computational finance. One example is the sensitivity of financial
derivatives such as options to a change in underlying parameters on which the value of an
instrument is dependent, sometimes known as “the Greeks”. Matlab example functions
include: ’blsprice’, ’binprice’, ’blkprice’. Thus, we can use ADMAT 2.0 to evaluate “the
Greeks” very conveniently.

The sensitivity problem in project valuation is also interesting. The discounted cash
flow analysis is a traditional way to price a project. However, it is subjective to choose
a proper discount rate because the discount rate depends on the type of risk involved.
Another way to valuate a project is using real option analysis. A real option gives the right
but not the obligation to undertake some business decisions (such as choosing, contracting,
or abandoning, a capital investment). The binomial tree method is an approach to price a
real option and it takes the volatility as an input parameter. Estimation of the volatility
of a real option is believed to be the greatest challenge in practice. Therefore, it will be
interesting to investigate these sensitivity problems in project valuation.

Another application of approximating the expected value, E(fµ(x)), is CVaR minimiza-
tion. In CVaR minimization, generally we assign an expected return to each asset. As a
result, the number of parameters is equal to the number of variables. In our problem, we
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are mostly interested in n� m. CVaR is a constrained problem while our original problem
is an unconstrained one. We will explain how our risk protection approach can be used in
CVaR minimization problem in Section 3.

The essay is organized in the following way. Section 2 introduces the motivation for the
risk protection approach and shows the advantages of using the risk protection approach
by both theoretic results and computational results. Section 3 shows the applications of
ADMAT 2.0 and the risk protection approach in some problems in computational finance.
Section 4 is the conclusion. We put introduction to automatic differentiation technique
and BFGS method and trust-region method algorithms in Appendix so that the essay will
be self-contained.
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Chapter 2

Risk Protection Approach

2.1 Motivation of Risk Protection Approach

Let f(x, µ) be a scalar-valued function of n variables x and m parameters µ. Assume that
the dependence of f on x and µ is twice continuously differentiable. Suppose µ is a random
variable that has a continuous distribution. Suppose we wish to minimize the expected
function of f—E[f(x, µ)], where the expectation is over the random choice of µ and the
minimization is over x.

Instead of calculating the expectation by integration, i.e.,

E[f(x, µ)] =

∫ ∞

−∞
f(x, µ)g(µ)dµ

where g(µ) is the probability density function for µ. we can select numerous sample values
from the distribution of µ and approximate E[f(x, µ)] by

E[f(x, µ)] =
1

p

p∑
i=1

f(x, µi)

where µ1, · · · , µp are sample values of µ. It is obvious that the approximation will be
accurate when p goes to infinity, i.e.,

∀ε > 0, Pr(|E[f(x, µ)]− 1

p

p∑
i=1

f(x, µi)| > ε)→ 0 as p→∞

Define g(x) as

g(x) ≡ 1

p

p∑
i=1

f(x, µi) (2.1)
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Minimizing g(x) is an approach to finding the minimizer of E[f(x, µ)].

The problem with minimizing g(x) is that the cost of evaluating the gradients of g(x)
is expensive when p is large because the gradients of f(x, µi) will be evaluated at different
µi. The risk protection approach we propose tries to minimize another function g̃(x). Let
µ̄ be the mean of the sample values µ1, · · · , µp. We can estimate f(x, µi) using a Taylor
series around µ̄. Define

f̃(x, µi) ≡ f̃i(x) = f(x, µ̄) +∇µf(x, µ̄)T (µi − µ̄) +
1

2
(µi − µ̄)T∇2

µf(x, µ̄)(µi − µ̄) (2.2)

and

g̃(x) ≡ 1

p

p∑
i=1

f̃i(x) (2.3)

When minimizing g̃(x), the cost to evaluate the gradients and Hessians of g̃(x) will be
significantly less than the cost of g(x). The detailed analysis can be found in the next
section. Moreover, g̃(x) is a satisfiable approximation to E[f(x, µ)] as well as g(x).

The following examples show that when p is fairly large, (2.1) and (2.3) are both
suitable approximations for the expected value E[f(x, µ)]. In our examples, µ has a normal
distribution or uniform distribution. However, µ can be assumed to follow any distribution
as long as the sample values of µ are chosen randomly according to the same distribution.

Suppose µ is uniformly distributed in [0, 3], f(x, µ) = xµ3. The expected value

E[f(x, µ)] at x = 2 is
∫ 3

0
2µ3 1

3
dµ = 13.5. The approximations obtained by (2.1) are

shown in Table 2.1 .

Table 2.1: Approximations to the Expected Value, Example 1
p = 100 p = 1000 p = 10000 p = 100000

g(x) 14.9356 13.6035 13.8441 13.5350
g̃(x) 14.1250 13.1950 13.8455 13.5449

Suppose µ is uniformly distributed in [0, 10], f(x, µ) = xµ3. The expected value

E[f(x, µ)] at x = 2 is
∫ 10

0
2µ3 1

10
dµ = 500. The approximations by (2.1) are shown in

Table 2.2.

Table 2.2: Approximations to the Expected Value, Example 2
p = 100 p = 1000 p = 10000 p = 100000

g(x) 440.8820 510.3992 506.7020 501.5022
g̃(x) 529.8732 480.0121 510.4116 501.8660
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Suppose µ is normally distributed in N(2, 1) and f(x, µ) = xµ3. The expected value

E[f(x, µ)] at x = 2 is
∫∞
−∞ 2µ3 1√

2π
exp(− (x−2)2

2
)dµ = 28. The approximations by (2.1) are

shown in Table 2.3.

Table 2.3: Approximations to the Expected Value, Example 3
p = 100 p = 1000 p = 10000 p = 100000

g(x) 23.5147 27.6601 27.2750 27.8768
g̃(x) 31.1890 27.5708 27.9571 27.9557

Suppose µ is normally distributed in N(2, 2), f(x, µ) = xµ3. The expected value

E[f(x, µ)] at x = 2 is
∫∞
−∞ 2µ3 1

2
√

2π
exp(− (x−2)2

2×22 )dµ = 64. The approximations by (2.1) are
shown in Table 2.4.

Table 2.4: Approximations to the Expected Value, Example 4
p = 100 p = 1000 p = 10000 p = 100000

g(x) 73.6073 69.7909 63.9035 63.6521
g̃(x) 74.6637 68.9387 63.1950 64.0597

These experiments clearly illustrate that more sample values are needed to achieve
accurate approximations as the variance increases. When we have some distribution with
mild variance, we don’t need p to be quite large to achieve desirable approximation.

It is worthy to mention that a random guess from the distribution f(x, µguess) or the
function value of f at the mean of sample values, i.e., f(x, µ̄), are not good approximations
for E[f(x, µ)] in most cases. Use the same function f(x, µ) = xµ3 where µ ∼ N(2, 1) from

previous example. The expected value E[f(x, µ)] at x = 2 is
∫∞
−∞ 2µ3 1√

2π
exp(− (x−2)2

2
)dµ =

28. We generate µguess randomly from N(2, 1) and 100 sample values from the same
distribution to calculate the sample mean µ̄. We repeat the experiments 5 times and
display the results in Table 2.5.

It is obvious from Table 2.5 that g(x) or g̃(x) are much more desirable approximations
for E[f(x, µ)] than f(x, µguess) or f(x, µ̄).

2.2 Compare the Cost of Minimizing g(x) or g̃(x)

To do the minimization in Matlab, we use ’fminunc’ in the Matlab optimization toolbox.
Function ’fminunc’ uses the BFGS method for medium-scale problem by default and the
trust region method for large-scale problem. Both of these algorithms require gradients of
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Table 2.5: Approximations to the Expected Value, Example 5
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

µguess 0.8299 3.3001 4.9863 0.6160 0.2025
f(x, µguess) 1.1432 71.8791 247.9436 0.4675 0.0166

µ̄ 2.1206 1.9937 1.8286 2.0154 2.0791
f(x, µ̄) 19.0723 15.8481 12.2297 16.3735 17.9755
g(x) 32.1296 26.0700 24.1327 31.0705 33.5842
g̃(x) 32.2989 25.9643 24.1192 30.8658 32.6712

the objective function. The trust region method may require the Hessians of the objective
function as well. We adopt the automatic differentiation technique to get the gradients
and Hessians of the objective function by using ADMAT 2.0.

Let ω(f) be the cost to evaluate f . The forward mode needs no more than 4nω(f) to
compute the gradients of f with respect to x while the reverse mode needs no more than
4ω(f) in theory. The forward mode needs O(n2ω(f)) to compute the Hessians of f with
respect to x while the reverse mode needs no more than (10n + 4)ω(f). Not surprisingly,
the reverse mode uses more memory because all the intermediate variables are saved. The
forward mode and reverse mode of automatic differentiation and their complexities will be
introduced in Section 3. Now, we analyze the costs to evaluate function value, gradient,
and Hessian of g(x) and g̃(x) respectively.

Recall the definitions of g(x) and g̃(x).

g(x) ≡ 1

p

p∑
i=1

f(x, µi) (2.4)

f̃(x, µi) ≡ f̃i(x) = f(x, µ̄) +∇µf(x, µ̄)T (µi − µ̄) +
1

2
(µi − µ̄)T∇2

µf(x, µ̄)(µi − µ̄) (2.5)

g̃(x) ≡ 1

p

p∑
i=1

f̃i(x) (2.6)

The cost of evaluating g is p × ω(f). The cost of evaluating g̃ by reverse mode is
5× ω(f) [to evaluate f and the gradient with respect to µ at x, µ̄] + p×m[multiplication
to finish first-order term] + (10m+ 4)×ω(f)[to evaluate the Hessian with respect to µ] +
p×m2[multiplication of second-order term]=ω(f)(10m+ 9) + pm+ pm2.
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The gradient of g̃ is as follows.

∇xg̃ = ∇xg(x, µ̄) +
1

p

p∑
i=1

∇x(∇µf(x, µ̄)T (µi − µ̄) +
1

2
(µi − µ̄)T∇2

µf(x, µ̄)(µi − µ̄)) (2.7)

= ∇xg(x, µ̄) +
1

p

p∑
i=1

∇x(
1

2
(µi − µ̄)T∇2

µf(x, µ̄)(µi − µ̄)) (2.8)

The cost of evaluating the gradient of g is p × 4 × ω(f). The cost of evaluating the
gradient of g̃ is 4×ω(f) [to evaluate the gradient with respect to x at x, µ̄] + 4×(10m+4)×
ω(f)[to evaluate the Hessian with respect to µ] + p ×m2 [multiplication of second-order
term]=ω(f)(20 + 40m) + pm2.

The Hessian of g̃ is as follows.

∇2
xg̃ = ∇2

xg(x, µ̄) +
1

p

p∑
i=1

∇2
x(∇µf(x, µ̄)T (µi − µ̄) +

1

2
(µi − µ̄)T∇2

µf(x, µ̄)(µi − µ̄)) (2.9)

= ∇2
xg(x, µ̄) +

1

p

p∑
i=1

∇2
x(

1

2
(µi − µ̄)T∇2

µf(x, µ̄)(µi − µ̄)) (2.10)

The cost of evaluating the Hessian of g is p× (10n+ 4)× ω(f). The cost of evaluating
the Hessian of g̃ is (10n + 4)× ω(f) [to evaluate the Hessian with respect to x at x, µ̄] +
(10n+4)×(10m+4)×ω(f)[to evaluate the Hessian] + p×m2[multiplication of second-order
term]= ω(f)[(10n+ 4)(10m+ 5)] + pm2.

The following table shows the computation cost to evaluate g, gradient of g, Hessian of
g and those of g̃.

Table 2.6: Computational Cost for g and g̃
computational cost for g computational cost for g̃

evaluating function value ω(f)p ω(f)(10m+ 9) + pm+ pm2

evaluating gradients ω(f)4p ω(f)(20 + 40m) + pm2

evaluating Hessians ω(f)p(10n+ 4) ω(f)[(10n+ 4)(10m+ 5)] + pm2

Thus, it costs much less to evaluate the derivatives of g̃(x) than those of g(x) when
ω(f) � m2 and p � 10m + 9. These two assumptions are realistic because the cost
of evaluating the function itself and the number of sample values in the risk protection
approach are generally much larger the number of unknown parameters. Figure 2.1 shows
the time needed to evaluate the function value, gradient, and Hessian of g(x) and g̃(x)
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while Figure 2.2 shows log of the time needed. In the experiment setup, ω(f) � 2n3; n
increases from 5 to 100; m is equal to 2; p is equal to 100. When n is greater than 60, the
time spent in evaluating the derivatives of g(x) is unsatisfactory. As for g̃(x), the gradients
and Hessians of f(x, µ) with respect to µ are obtained in two ways. One is symbolic
differentiation; the other is finite differencing. The time needed for g̃(x) when n = 100 is
still acceptable.

Figure 2.1: Time Needed to Evaluate Derivatives of g and g̃
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Figure 2.2: ln(Time) Needed to Evaluate Derivatives of g and g̃
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Chapter 3

Applications of Risk Protection
Approach

3.1 Calculating Greeks of Options

In mathematical finance, the Greeks such as ∆, Γ, ρ, Θ and Vega are used to model
the behavior of options in correlation to changes in the value of the underlying financial
instruments, interest rates, time and volatility. Let V denote the value of the portfolio
of derivatives on a single underlying asset, S denote the price of the underlying asset, r
denote the interest rate, τ = T − t denote the time to maturity, and σ denote the volatility.
Mathematically, we have ∆ = ∂V

∂S
, Γ = ∂∆

∂S
= ∂2V

∂S2 , ρ = ∂V
∂r

, Θ = −∂V
∂τ

, and ν = ∂V
∂σ

.

Under Black-Scholes framework, closed forms of the Greeks exist by using φ, stan-
dard normal probability density function, and Φ, standard normal cumulative distribution
function. If we define the call option price by

C(S, 0) = SN(d1)−Ke−rTN(d2)

and the put option price by

P (S, 0) = Ke−rTN(−d2)− SN(−d1)

in the objective function, where d1 = ln(S/K)+(r+σ2/2)T )

σ
√
T

and d2 = d1 − σ
√
T , then we can

use the ‘feval‘ function in ADMAT 2.0 to calculate the Greeks accurately without knowing
the closed form formulas of the Greeks. Experiments show that the Greeks of European
call options and put options are the same as the results using the functions in the financial
toolbox in Matlab.
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3.2 Calculating Sensitivity of Project Value Using Dis-

count Cash Flow Method

Project valuation is essential when the investing pool has a few potential projects. The
discounted cash flow analysis is a traditional way to price a project.

Steps of using discounted cash flow analysis include [12]:

1. Estimate the investment cost.

2. Estimate the annual revenues and annual costs and calculate the annual net cash
flow for the expected project life cycle.

3. Calculate the present values of each net cash flow.

4. Calculate the net present value of the project.

An example of discount cash flow method is as Table 3.1 shows.

Table 3.1: Discounted Cash Flow Calculations for a Project

Year

0 1 2 3 4 5 6
Investment cost -$12.00
Annual revenue $3.00 $6.00 $10.00 $10.00 $10.00 $6.00

Annual cost $2.00 $2.50 $3.00 $3.00 $3.00 $2.50
Annual net cash flow $1.00 $3.50 $7.00 $7.00 $7.00 $3.50

Discount rate 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Discount factor 1.00 0.83 0.69 0.58 0.48 0.40 0.33

PV of annual cash flow -$12.00 $0.83 $2.43 $4.05 $3.38 $2.81 $1.17

NPV $2.68

It is not easy to determine a suitable discount rate in discounted cash flow analysis.
Firstly, the discount rate is related to the magnitude of risk. Secondly, we need to distin-
guish between private risk and market risk associated with the project. If the cash flow
stream is influenced by private risk, it is commonly agreed that the investor will not pay a
risk premium thus a risk free rate should be used as the discount rate. On the other hand,
if market risk is associated, the discount rate should be adjusted, i.e., a proportional risk
premium should be added to the risk free rate. The problem is that most of the approaches
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to determining the risk-adjusted discount rate are subjective. Thus, the sensitivity of the
net present value of a project with respect to the discount rate is worth investigating.

Let the output of the objective function f be the net present value and the variable x be
the discount rate. Using ADMAT 2.0, we can calculate the sensitivity ∂f

∂x
|x=0.2 = −43.70.

3.3 Calculating Sensitivity of Real Option Value Us-

ing Binomial Tree Method

It is common that organizations upsize or downsize as the market demands change or
technology develops. Option to contract is a real option created for organizations so that
they can hedge themselves.

For example, a car builder A introduces a new production-line. However, a competitor
B is likely to introduce a similar line at much cheaper cost in two years. Hence, A can
buy an option to contract 50 percent of its current size at any time over the next 5 years
and gain $300 million in savings. The net present value of the future cash flows is $500;
the risk free rate is assumed to be 10% over the 5 years; the annual volatility is estimated
to be about 35%. If we choose δt = 1 year, we can build a binomial tree to calculate the
value of the real option.

Firstly, we calculate u, d, and risk neutral probability p by formulas: u = eσ
√
δt, d = 1/u,

and p = erδt−d
u−d . Then, we construct a binomial tree with asset values at each node as Figure

3.1 shows. Next, we determine the option values at each node of a binomial tree as Figure
3.2 shows. In year 5, the option value is the maximum between the continuation value,
which is the same as the asset value, and the contract value, i.e., 0.5*asset value+$300.
The option value at each node before the final year is calculated by the maximum between
the contract value and the risk-adjusted asset value, i.e., (p*option value at upper node in
the next year+(1-p)*option value at lower node in the next year)*discount factor. Carry
on the calculations until the single node of year 0 is reached.

In the above example, the value is $563 million at year 0. Because the present value
of the future cash flows is $500 million, the difference of $63 million is the value of the
real option. Unlike financial options, it is not easy to determine an appropriate volatility
of a real option because no historical data can be used. Thus, we are interested in the
sensitivity of the real option value with respect to the volatility. Again, we use ADMAT
2.0 to do the analysis. Suppose the output of the objective function f is the real option
value and the variable x is the volatility. We get ∂f

∂x
|x=0.35 = 181.79.
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Figure 3.1: Binomial Tree of Asset Value

Figure 3.2: Binomial Tree of Option Value
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3.4 CVaR Minimization

VaR, or Value at Risk, is a risk measure in financial mathematics. VaR is defined as
the worst case loss that could be expected to be incurred from a given portfolio over a
certain time period within a specified level of probability. Because VaR lacks subadditivity
as a risk measure and neglects extreme loss information, another risk measure CVaR, or
conditional VaR, which computes the expected loss given that the loss exceeds VaR, has
been proposed.

Consider a portfolio of financial instruments with random returns. Let x denote the
portfolio choice vector and µ denote the random returns. Assume that ρ(µ) is the proba-
bility density function of µ and f(x, µ) is the loss function. β−CVaR is defined as

CVaRβ(x) =
1

1− β

∫
f(x,µ)≥VaRβ(x)

f(x, µ)ρ(µ)dµ (3.1)

Let µ1, · · · , µp be sample values of µ chosen from the distribution of µ. (3.2) is an approx-
imation for CVaR.

CVaRβ(x) =
1

p(1− β)

∑
f(x,µi)≥VaRβ(x)

f(x, µi) (3.2)

Define Fβ(x, α) as

Fβ(x, α) = α +
1

1− β

∫
f(x,µ)≥α

(f(x, µ)− α)ρ(µ)dµ (3.3)

Literature shows that Fβ(x, α) is convex in α and continuously differentiable at α. More-
over, the minimum value over α of Fβ(x, α) is CVaRβ(x) [8], i.e.,

min
x

CVaRβ(x) = min
x,α

Fβ(x, α)

If f(x, µ) is convex with respect to x, Fβ(x, α) is convex with respect to (x, α). Hence, a
portfolio with minimum CVaR can be obtained.

Similarly, we can use sample values of µ to approximate Fβ(x, α). We solve

min
x,α

α +
1

p(1− β)

p∑
i=1

(f(x, µi)− α)+ (3.4)

If f(x, µ) is not linear or quadratic in µ, (3.4) can be approximated by (3.5), i.e., using
the risk protection approach.

min
x,α

α +
1

p(1− β)

p∑
i=1

(f̃(x, µi)− α)+ (3.5)
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The objective function in (3.5) is continuous but not differentiable. We introduce the same
smooth technique in [1] to (3.5) so that the objective function in (3.6) is differentiable.

min
x,α

α +
1

p(1− β)

p∑
i=1

ρε(f̃(x, µi)− α)+ (3.6)

where ρε(z) is defined as 
z if z ≥ ε
z2

4ε
+ 1

2
z + 1

4
ε if − ε ≤ z ≤ ε

0 otherwise

When the loss function is defined as f(x, µ) = −µTx and nonnegativity constraint and
unit constraint such as {xi ≥ 0,

∑
i xi = 1, i = 1, 2, · · · , n} are included, the problem

min
x,α

α +
1

p(1− β)

p∑
i=1

ρε(f̃(x, µi)− α)+

s.t. xi ≥ 0,
∑
i

xi = 1, i = 1, 2, · · · , n

is the standard CVaR minimization problem. In this case, f̃(x, µi) is the same as f(x, µi).

In our problem, f(x, µ) is not limited to being linear in µ. Thus, in the Matlab exper-
iments, f(x, µ) has three settings: linear in µ, quadratic in µ and non-quadratic in µ; p is
chosen to be 100; ε = 1.
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Chapter 4

Conclusion

In this essay, we proposed a risk protection approach for unconstrained nonlinear opti-
mization problem with uncertain parameters. In the risk protection approach, we first
generated sample values of µ through sampling, then we approximated each f(x, µi) using
a Taylor series around the mean of sample values µ̄. In this way, gradients and Hessians
of g̃(x) were evaluated at µ̄ once instead of at each µi as in the case of g(x). We showed
that the risk protection approach is a method to minimize the expected value of function
f , i.e., E[f(x, µ)], under desirable computational cost. At the same time, the reverse mode
of automatic differentiation technique was used to ensure accurate derivative evaluations
and satisfactory running time of minimization procedure. ADMAT 2.0 was used whenever
automatic differentiation was needed in the experiments in this essay. Some interesting
sensitivity problems in computational finance as well as the CVaR minimization problem,
to which ADMAT 2.0 and the risk protection approach can be applied, were investigated
with detailed examples. We introduced automatic differentiation technique, forward mode
and reversed mode in Appendix. In addition, We briefly explained two nonlinear opti-
mization algorithms in Matlab optimization toolbox, i.e., the BFGS method and the trust
region method, in Appendix.
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Appendix A

Methods to Get Derivatives

A.1 Symbolic Differentiation, Finite Differencing and

Automatic Differentiation

Most algorithms for minimization problems require gradients and Hessians. Traditional
ways of getting gradients and Hessians include differentiation by hand, symbolic differen-
tiation, and finite differencing.

Taking derivatives by hand is very inefficient and error-prone. Symbolic differentiation
can automatically produce an expression for the derivatives of a function. However, the
approach is quite limited because it does not allow loops, branches, and subroutines in the
computer program. Thus, when loops or branches occur in the objective function, human
effort is needed to break up the complicated program to small pieces and reassemble all
the results after differentiation.

Finite differencing uses approximations for the derivatives. For example, forward finite
differencing uses the following formula to approximate the gradient,

∂f(x0)

∂xi
≈ f(x0 + δe(i))− f(x0)

δ

where e(i) is the i-th unit vector and δ > 0. There are several disadvantages of finite
differencing. Firstly, the accuracy of the approximation is hard to estimate. Secondly, δ
has to be chosen suitably, which is not easy. In theory, δ needs to be small so that the
higher order terms in the Taylor expansion of f can be ignored. However, if δ is too small,
the cancellation error because of the subtraction of two similar values could be significant.
Moreover, finite differencing is expensive, especially for higher order derivatives. Lastly,
x0 + δe(i) may be outside of the domain of f .
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The research on automatic differentiation has been active since the last century. Auto-
matic differentiation is a technique for automatically augmenting computer programs with
derivative computations [9]. The idea is that each program can be broken into a sequence
of elementary arithmetic operations and then the chain rule of calculus can be applied to
these operations repeatedly. As a result, accurate derivatives of arbitrary order can be
obtained automatically.

Besides the advantage of being accurate, automatic differentiation has the potential
of less cost to get the gradient and the Hessian compared with finite differencing. If the
objective function is defined as f : Rn → R, the cost of computing the gradient of f
with either finite differencing or symbolic differentiation grows linearly with the number of
variables n. In contrast, the cost of evaluating the function value and the gradient of f by
reverse mode in automatic differentiation is at most four times the cost of evaluating f [10],
which is unrelated to n. The forward mode and reverse mode of automatic differentiation
will be introduced next.

All work in this essay using automatic differentiation is done by ADMAT 2.0.

A.2 Forward Mode and Reverse Mode in Automatic

Differentiation [13]

Let Φ be defined as Φ : Rn → Rm. Any program to evaluate Φ at ξ ∈ Rn can be
written as a sequence of K scalar assignment statements: There are K variables in total

Algorithm A.2.1 Evaluate Φ

for i = 1 to n do
xi = ϕi(xi) = ξi

end for
for i = n+ 1 to K do
xi = ϕ(x1, · · · , xi−1)

end for

in Algorithm A.2.1. Since Φ is defined as Φ : Rn → Rm, we call the first n variables
independent variables. The last m variables are called output variables and the rest are
called temporary variables. We require the function ϕi to be elementary functions, i.e.,
each ϕi is basic arithmetic operations (±, *, /) or a univariate transcendental function
(exp, cos, etc).

Our goal is to differentiate the output variables with respect to the independent vari-
ables. We say a variable xi, i > n is active when either an independent variable or an
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active variable is assigned to it. We apply chain rule to both sides of the equations in
Algorithm A.2.1 and obtain the following results:

∂xi
∂xj

=

 δij +
i−1∑
k=1

∂ϕi
∂xk

∂xk
∂xj

, j ≤ i ≤ K

0, j > i

(A.1)

Define the following matrices

Dϕ :=
{∂ϕi
∂xj

}K

i,j=1
=


0 · · ·

∂ϕ2/∂x1 0 · · ·
∂ϕ3/∂x1 ∂ϕ3/∂x2 0 · · ·

...



Dx :=
{∂xi
∂xj

}K

i,j=1
=


1 · · ·

∂x2/∂x1 1 · · ·
∂x3/∂x1 ∂x3/∂x2 1 · · ·

...


Then (A.1) can be written in matrix form as follows,

Dx = I + (Dϕ)(Dx)

This is equivalent to
(I −Dϕ)Dx = I (A.2)

Dx(I −Dϕ) = I

and
(I −Dϕ)T (Dx)T = I (A.3)

The system (A.2) is lower triangular. Thus, ∂xi/∂xj can be computed by using the forward
substitutions

for i = 2 to K do
for j = 1 to i− 1 do

∂xi
∂xj

=
i−1∑
k=j

∂ϕi
∂xk

∂xk
∂xj

end for
end for

Because forward substitutions are used, the method is called forward mode of automatic
differentiation. Similarly, the system (A.3) is upper triangular, so we can derive the reverse
mode of automatic differentiation using backward substitutions
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for j = K − 1 to 1 do
for i = K to j + 1 do

∂xi
∂xj

=
i∑

k=j+1

∂ϕk
∂xj

∂xi
∂xk

end for
end for

A.3 Examples of Automatic Differentiation

In this subsection, we give examples on forward mode and reverse mode of automatic
differentiation respectively. We present the program to obtain the gradient of a real-valued
function f : Rn → R. Suppose f = x1/x2 + cos(x1 + x2).

The program to evaluate f can be written as follows

x1 = ξ1

x2 = ξ2

x3 = x1/x2

x4 = x1 + x2

x5 = cos(x4)

x6 = x3 + x5

f = x6

Generally, if an original program of a real-valued function f : Rn → R is as Algorithm
A.3.1 shows, the augmented program using the forward mode is as Algorithm A.3.2 shows
[13].

Algorithm A.3.1 Evaluate f by using a sequence of basic operations

for i = 1 to n do
xi = ϕi(xi) = ξi

end for
for i = n+ 1 to K do
xi = ϕi(x1, · · · , xi−1)

end for
f = xK

For the above example, the forward mode computes the gradient in the following order

x1 = ξ1, ∇x1 = (1, 0)T
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Algorithm A.3.2 Augmented program using the forward mode

for i = 1 to n do
xi = ϕi(xi) = ξi
∇xi = e(i)

end for
for i = n+ 1 to K do
xi = ϕi(x1, · · · , xi−1)

∇xi =
i−1∑
j=1

∂ϕi
∂xj
∇xj

end for
f = xK
∇f = ∇xK

x2 = ξ2, ∇x2 = (0, 1)T

x3 = ϕ3(x1, x2) = x1/x2

∇x3 =
∂ϕ3

∂x1

∇x1 +
∂ϕ3

∂x2

∇x2 =
1

x2

∇x1 +
−x1

x2
2

∇x2 = (
1

x2

,
−x1

x2
2

)T

x4 = ϕ4(x1, x2) = x1 + x2

∇x4 =
∂ϕ4

∂x1

∇x1 +
∂ϕ4

∂x2

∇x2 = ∇x1 +∇x2 = (1, 1)T

x5 = ϕ5(x4) = cos(x4)

∇x5 =
∂ϕ5

∂x4

∇x4 = − sin(x4)∇x4 = (− sin(x4),− sin(x4))T

x6 = ϕ6(x3, x5) = x3 + x5

∇x6 =
∂ϕ6

∂x3

∇x3 +
∂ϕ6

∂x5

∇x5 = ∇x3 +∇x5 = (
1

x2

− sin(x4),
−x1

x2
2

− sin(x4))T

∇f = ∇x6 = (
1

x2

− sin(x4),
−x1

x2
2

− sin(x4))T

In the reverse mode, the augmented program is as Algorithm A.3.3 shows [13],

For the same example, the reverse mode calculates the gradient as follows,

x3 = ϕ3(x1, x2) = x1/x2

x4 = ϕ4(x1, x2) = x1 + x2

x5 = ϕ5(x4) = cos(x4)

x6 = ϕ6(x3, x5) = x3 + x5

f = x6
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Algorithm A.3.3 Augmented program using the reverse mode

for i = 1 to n do
xi = ξi

end for
for i = n+ 1 to K do
xi = ϕi(x1, · · · , xi−1)

end for
f = xK
for i = 1 to K − 1 do
x̄i = 0

end for
x̄K = 1
for i = K to n+ 1 do
x̄j = x̄j + ∂ϕi

∂xj
x̄i ∀j ≤ i

end for
∇f = {x̄i}ni=1

x̄i = 0, i = 1, · · · , 5
x̄6 = 1

x̄3 = x̄3 + x̄6
∂ϕ6

∂x3

= 1

x̄5 = x̄5 + x̄6
∂ϕ6

∂x5

= 1

x̄4 = x̄4 + x̄5
∂ϕ5

∂x4

= − sin(x4)

x̄1 = x̄1 + x̄4
∂ϕ4

∂x1

= − sin(x4)

x̄2 = x̄2 + x̄4
∂ϕ4

∂x2

= − sin(x4)

x̄1 = x̄1 + x̄3
∂ϕ3

∂x1

= − sin(x4) +
1

x2

x̄2 = x̄2 + x̄3
∂ϕ3

∂x2

= − sin(x4) +
−x1

x2
2

∇f = (x̄1, x̄2)T = (− sin(x4) +
1

x2

,− sin(x4) +
−x1

x2
2

)T

The gradients from the forward mode and reverse mode are the same. Because all the
intermediate variables are saved in the reverse mode, the reverse mode requires extra
storage.
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A.4 Complexities of the Forward Mode and the Re-

verse Mode

The complexity results for Automatic Differentiation algorithms are given in Table A.1
[11].

Table A.1: Complexity Results for AD Algorithms
forward reverse

L(f,∇f) ≤ 4nL(f) ≤ 4L(f)
L(f,∇f,H) O(n2L(f)) ≤ (10n+ 4)L(f)
S(f,∇f)

O(S(f)) O(S(f) + L(f))
S(f,∇f,H)
L(F,DF ) O(nL(f)) ≤ (3m+ 1)L(f)
S(F,DF ) O(S(f)) O(S(f) + L(f))

where the definitions are

f : Rn → R

F : Rn → Rm

∇f : the gradient of f

DF : the Jacobian of f

L(· · · ) : number of basic operations to compute (· · · )
S(· · · ) : work space needed to compute (· · · )
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Appendix B

Minimization Algorithms for
Nonlinear Unconstrained Problem

Suppose f is an at least twice continuously differentiable real-valued function defined as
f : Rn → R. We consider the unconstrained minimization problem, i.e.,

min
x∈Rn

f(x)

Let x0 be the initial guess of the minimizer. Using Taylor expansion, the function value
f can be approximated near x0 by

f(x0 + p) ≈ f(x0) +∇f(x0)Tp+
1

2
pTH(x0)p, p ∈ Rn (B.1)

If the Hessian matrix is positive definite at x0, then the minimizer of the right of (B.1)
with respect to p is unique determined by H(x0)p = −∇f(x0). A new approximation of f
can be obtained at x1 = x0 + p.

The above method is called Newton’s method. The advantage of Newton’s method
is the quadratic convergence speed in the last stages of iteration under some conditions.
However, the classic Newton’s method also has several drawbacks. The first disadvan-
tage is that the Hessian at xk may not be positive definite. Thus, the search direction
pk = −[H(xk)]

−1∇f(xk) may not be a descent direction. In addition, we need to solve an
n × n system of linear equations to obtain the Hessian and solving the linear system re-
quires O(n3) operations using Cholesky decomposition or Gaussian elimination. Moreover,
Newton’s method has only local convergence, i.e., the algorithm converges to the true local
minimizer only if the initial point x0 is close to the true local minimizer.

In Matlab, the ’fminunc’ function in the optimization toolbox uses two other minimiza-
tion algorithms for nonlinear unconstrained optimization: the BFGS method by default for
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medium-scale problems and the trust region method for large-scale problems. The BFGS
method is one of the quasi-Newton methods. It uses some positive definite matrix to re-
place the Hessian at each iteration. Thus, each search direction pk is a descent direction.
Moreover, the cost of obtaining the search direction in the BFGS method can be reduced
to O(n2). The trust region method fixes the local convergence problem with the Newton’s
method.

B.1 BFGS Method

Instead of using Hessians in the iterations, the BFGS method uses some positive definite
matrix to approximate the Hessian at each iteration. The framework of the BFGS method
is as Algorithm B.1.1 shows.

Algorithm B.1.1 Framework of BFGS Method [14]

1: for k = 0, 1, 2, · · · do

2: pk = −B−1
k ∇f(xk)

3: select αk via line search

4: xk+1 = xk + αkpk

5: Use formula to obtain Bk+1 from Bk

6: end for

Two conditions must be met in BFGS method. One is called the secant condition; the
other is the Wolfe conditions in the line search. If we use a sequence of {Bk} to approximate
the Hessians, the secant condition is as follows

Bk+1(xk+1 − xk) = ∇f(xk + 1)−∇f(xk) (B.2)

The Wolfe conditions in line search are required so that Bk+1 is positive definite provided
that Bk is positive definite. The Wolfe conditions require that

(∇f(x+ p)−∇f(x))T (xk+1 − xk) > 0

The complete algorithm for the BFGS method is as Algorithm B.1.2 shows [13]. Step 2
requires O(n3) operations to obtain the search direction pk. If we update Hk+1 = B−1

k+1 from
Hk = B−1

k using Sherman-Morrison-Woodbury formula, we can obtain pk = −Hk∇f(xk)
in O(n2) operations.
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Algorithm B.1.2 Algorithm of BFGS Method

1: Choose initial guess x0, a tolerance parameter ε > 0. Set B0 = I and k = 0

2: Calculate the search direction pk by solving pk = −B−1
k ∇f(xk)

3: select αk via line search

4: Update xk+1 = xk + αkpk

5: if ‖∇f(xk+1)‖ ≤ ε then

6: stop

7: end if

8: Update the Hessian approximation by Bk+1 = Bk − Bksk(Bksk)T

sTkBksk
+ yk(yk)T

(yk)T sk
, where sk =

xk+1 − xk, yk = ∇f(xk+1)−∇f(xk)

B.2 Trust Region Method

In the trust region method, we define the Quadratic Model as follows

m(xk + p) = f(xk) +∇f(xk)
Tp+

1

2
pT∇2f(xk)p (B.3)

The idea is that we assume that m(xk + p) is valid only for p such that ‖p‖ ≤ ∆. We
obtain xk+1 = xk + pk by solving the Trust Region Subproblem defined as follows

pk = arg minm(xk + p), s.t. ‖p‖ ≤ ∆ (B.4)

On each iteration, the trust region method finds the minimizer of the Quadratic Model in
a ball of radius ∆k about xk. Depending on whether the model faithfully reflects f , set

∆k+1 =


∆k
1
4
∆k

2∆k

The overall algorithm of the trust region method is as Algorithm B.2.1 shows.

The trust region method has global convergence. Furthermore, the sequences using this
algorithm will converge to x∗ satisfying second order necessary condition, i.e., ∇2f(x∗) is
positive semi-definite. The trust region method in ’fminunc’ function is more complicated
by incorporating other techniques [6, 2].
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Algorithm B.2.1 Algorithm of Trust Region Method [14]

Given x0,∆

for k = 0, 1, 2, · · · do

Compute search direction pk by solving Trust Region Subproblem (B.4)

ρk = f(xk)−f(xk+pk)
m(xk)−m(xk+pk)

if ρk <
1
4

then

∆k+1 = 1
4
∆k

else if ρk >
3
4

and ‖pk‖ = ∆k then

∆k+1 = 2∆k

else

∆k+1 = ∆k

end if

if ρk > η then

xk+1 = xk + pk

else

xk+1 = xk

end if

end for
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